Fall 2008 CAP 6616 Neuroevolution and Generative and Developmental Systems: Syllabus

MW 2:30PM - 3:45PM in HEC room 111

Instructor: Dr. Kenneth Stanley

Email: kstanley@cs.ucf.edu
Website: http://www.cs.ucf.edu/~kstanley
EPlex Research Group: http://eplex.cs.ucf.edu

Office: Harris 332

Office Hours (starting 8/25/08): Mondays 4-6pm and Tuesdays 3-4:30pm

TA: None


Fundamentals of Neural Networks by Laurene V. Fausett (1994)

Evolutionary Computation: A Unified Approach by Kenneth A. De Jong (2006)
(Sometimes listed as 2002)

Assorted Current Research Papers

Software and Source Code

Any version of NEAT except those with novelty search can be used in the class projects. A number of versions are available here: http://www.cs.ucf.edu/~kstanley/#software

The latest clean version written by myself is rtNEAT, available here. A stripped down version of my non-real-time code is neatVS.zip, refitted for easy compiling by Jared Johnson..


The purpose of this artificial intelligence (AI) course is to introduce students to current topics in the artificial evolution of complex systems, focusing on evolving neural networks (i.e. neuroevolution). In neuroevolution, a Darwinian survival-of-the-fittest competition among neural networks leads to increasingly sophisticated solutions without the need for human design. However, such a process requires a principled approach to combining, selecting, and encoding large, complex neural networks. The class will also examine sophisticated encoding techniques based on the growth of an embryo from a single cell (i.e. generative and developmental systems) and DNA encoding in nature. Such techniques promise to facilitate the evolution of neural networks with orders of magnitude more complexity than has been heretofore possible. This course will introduce students to the cutting edge of such research, culminating in a project in which students program their own system that evolves increasingly complex structures over time. Neural networks are a good proxy for complex systems in general, exhibiting many of the key properties that make such systems difficult to evolve. The class surveys methods in neuroevolution that have resulted in new ways to produce controllers for a broad range of difficult sequential decision tasks and creative endeavors, including robot and autonomous vehicle control, pattern generation, limb coordination, warning systems, factory optimization, intelligent video games, and computer-generated art and music. Although neural networks are a major focus for the course, students will not be restricted in the type of structure their systems can evolve. In this way, students will become experts through hands-on experience.

Grading Policy

Grades will be based 65% on a final project (10% final presentation and 55% final report), 25% on project milestones, and 10% on quizes on assigned papers. Students must work with a partner and periodically report how they are allocating tasks.

Late policy: 20% off if turned in within one week. Otherwise, not accepted.

Project Milestones (25% of grade; all milestones must be turned in as a hardcopy report):

9/17: Initial proposal and project plan (5%)
9/24: XOR test (5%)
10/6: Domain code prelim (5%)
10/27: Midterm presentation and report (10%)
12/3: Final project and presentation (65% of grade)


All of the work that you turn in or present must be your own. Cheating, plagiarism, and any other form of academic dishonesty will be penalized. The minimum penalty for cheating will include:

Plagiarism and paraphrasing are forms of cheating. Plagiarism is the presentation of others' ideas and writings as your own. Paraphrasing is taking someone else's sentence, changing a few words, and then presenting it as your own. Both are unacceptable in this class.


August 25 Intro, context within AI, Prior Projects

August 27 Neural Networks Basics, Sequential Decision Problems, Complexity and Search

September 1 No Class: Labor Day

September 3 NEAT, CPPNs, HyperNEAT, Novelty Search Overviews and Applications

September 8 Project Discussions

September 10 Topics in Neural Networks: Backprop, Hebbian Learning, Biological Inspirations, Reinforcement Learning

September 15 Topics in Evolutionary Computation: Types of EC, Genetic Algorithms Basics

September 17 Genetic Algorithms Theory, Criticisms of EC, No Free Lunch
Initial Proposal and Project Plan Due

September 22 Neuroevolution (Evolving Neural Networks): Combining EC with NNs, Significance to AI, Classic obstacles

September 24 History of Neuroevolution, TWEANNS
XOR Test Due

September 29 NeuroEvolution of Augmenting Topologies (NEAT): Overcoming the obstacles

October 1 Post-NEAT Methods and Working with NEAT

October 6 Generative and Developmental Systems: The Power of Reuse, Prior Work, Biological Underpinnings, Skeptical Perspective
Preliminary Domain Code Due

October 8 Compositional Pattern Producing Networks (CPPNs)

October 13 HyperNEAT: Hypercube-based NEAT

October 15 Abandoning Objectives and the Search for Novelty

October 20 Advanced HyperNEAT

October 22 Real-time NEAT and the NERO video game

October 27 Midterm Project Reports

October 29 Midterm Project Reports

November 3 Advanced implementation issues for ANNs in video games

November 5 Competitive Coevolution and Complexification

November 10 More realistic neural models: Adaptive synapses

November 12 More on realistic neurons: Leaky integrator neurons

November 17 Interactive Evolutionary Computation and Genetic Art (Art, music, and other applications)

November 19 Evolution as a creative process, target-based vs. non-target-based evolution, large-scale IEC, Picbreeder, the organization dividend and "oragnizational metamorphosis"

November 24 The Puzzle of Complexification in Indirectly-Represented Phenotypes

November 26 Closing Remarks; Implementation Topics and Discussion

December 1 Project Discussion

December 3 Final Presentations
Final Projects Due

Classes End December 6th

December 10 Final Presentations

Student Final Presentations: Students will have run their own experiments in neuroevolution and generative and developmental systems and will present results and methods from their projects.