
Support Vector Machine Active Learning
for Image Retrieval

Simon Tong
Department of Computer Science

Stanford University
Sanford, CA 94305

simon.tong@cs.stanford.edu

ABSTRACT
Relevance feedback is often a critical component when de-
signing image databases. With these databases it is difficult
to specify queries directly and explicitly. Relevance feedback
interactively determinines a user’s desired output or query
concept by asking the user whether certain proposed images
are relevant or not. For a relevance feedback algorithm to be
effective, it must grasp a user’s query concept accurately and
quickly, while also only asking the user to label a small num-
ber of images. We propose the use of a support vector ma-
chine active learning algorithm for conducting effective rele-
vance feedback for image retrieval. The algorithm selects the
most informative images to query a user and quickly learns
a boundary that separates the images that satisfy the user’s
query concept from the rest of the dataset. Experimental
results show that our algorithm achieves significantly higher
search accuracy than traditional query refinement schemes
after just three to four rounds of relevance feedback.

Keywords
active learning, image retrieval, query concept, relevance
feedback, support vector machines.

1. INTRODUCTION
One key design task, when constructing image databases,
is the creation of an effective relevance feedback compo-
nent. While it is sometimes possible to arrange images
within an image database by creating a hierarchy, or by
hand-labeling each image with descriptive words, it is of-
ten time-consuming, costly and subjective. Alternatively,
requiring the end-user to specify an image query in terms of
low level features (such as color and spatial relationships) is
challenging to the end-user, because an image query is hard
to articulate, and articulation can again be subjective.

Thus, there is a need for a way to allow a user to implicitly
inform a database of his or her desired output or query con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’OI, Sep t . 30 -Oc t . 5,2001, Ottawa, Canada.
Copyright 2001 ACM l-581 13-394-4/01/0009., .$5.00

Edward Chang
Electrical & Computer Engineering

University of California
Santa Barbara, CA 93106

echang@ece.ucsb.edu

cept. To address this requirement, relevance feedback can be
used as a query refinement scheme to derive or learn a user’s
query concept. To solicit feedback, the refinement scheme
displays a few image instances and the user labels each im-
age as “relevant” or “not relevant.” Based on the answers,
another set of images from the database are brought up to
the user for labeling. After some number of such querying
rounds, the refinement scheme returns a number of items in
the database that it believes will be of interest to the user.

The construction of such a query refinement scheme (we
call it a query concept. learner or learner hereafter) can be
regarded as a machine learning task. In particular, it can
be seen as a case of pool-based active learning [18, 221. In
pool-based active learning the learner has access to a pool
of unlabeled data and can request the user’s label for a cer-
tain number of instances in the pool. In the image retrieval
domain, the unlabeled pool would be the entire database
of images. An instance would be an image, and the two
possible labelings of an image would be “relevant” and “not
relevant.” The goal for the learner is to learn the user’s
query concept - in other words the goal is to give a label
to each image within the database such that for any image,
the learner’s labeling and the user’s labeling will agree.

The main issue with active learning is finding a way to
choose informative images within the pool to ask the user
to label. We call such a request for the label of an image a
pool-query. Most machine learning algorithms are passive in
the sense that they are generally applied using a randomly
selected training set. The key idea with active learning is
that it should choose its next pool-query based upon the
past answers to previous pool-queries.

In general, and for the image retrieval task in particular,
such a learner must meet two critical design goals. First, the
learner must learn target concepts accurately. Second, the
learner must grasp a concept quickly, with only a small num-
ber of labeled instances, since most users do not wait around
to provide a great deal of feedback. In this study, we propose
using a support vector machine active learner (SVM*,.ti,,)
to achieve these goals. SVMA,.~%~~ combines active learning
with support vector machines (SVMs). SVMs [34, 11 have
met with significant success in numerous real-world learning
tasks. Like most machine learning algorithms, they are gen-
erally applied using a randomly selected training set which is
not very useful in the relevance feedback setting. Recently,

107

general purpose methods for active learning with SVMs have
been independently developed by a number of researchers [2,
28, 331. We shall use the work and theoretical motivation
of [33] on active learning with SVMs to extend the use of
support vector machines to the task of relevance feedback
for image databases.

Intuitively, SVMA,-~~~~ works by combining the following
three ideas:

1. SVM,L,~~~~~ regards the task of learning a target con-
cept as one of learning a SVM binary classifier. An
SVM captures the query concept by separating the
relevant images from the irrelevant images with a hy-
perplane in a projected space, usually a very high-
dimensional one. The projected points on one side
of the hyperplane are considered relevant to the query
concept and the rest irrelevant.

2. SVMActzue learns the classifier quickly via active learn-
ing. The active part of SVMA~~%~~ selects the most in-
formative instances with which to train the SVM clas-
sifier. This step ensures fast convergence to the query
concept in a small number of feedback rounds.

3. Once the classifier is trained, SVMA~~$~~ returns the
top-lc most relevant images. These are the Ic images
farthest from the hyperplane on the query concept
side.

In summary, our contributions are as follows:

. The use of SVM active learning for image retrieval.
We show that combining SVMs with an active learn-
ing component can produce a learner that is particu-
larly well suited to the query refinement task in image
retrieval, significantly outperforming traditional meth-
ods.

. The multi-resolution image feature organization. We
show that organizing image features in different reso-
lutions gives the learner the flexibility to model subjec-
tive perception and to satisfy a variety of search tasks.
Using this representation for images, our learner can
quickly converge to target query concepts.

The rest of this paper is organized into seven sections. Sec-
tion 2 introduces SVMs. Section 3 then introduces the no-
tion of a version space which in Section 4 provides theoretical
motivation for a method for performing active learning with
SVMs. Section 5 depicts our multi-resolution image char-
acterization. In Section 6, we report experimental results
showing that our SVM active learner significantly outper-
forms traditional methods. Section 7 surveys related work.
Finally, we offer our conclusions in Section 8.

2. SUPPORT VECTOR MACHINES
Support vector machines are a core machine learning tech-
nology. They have strong theoretical foundations and excel-
lent empirical successes. They have been applied to tasks
such as handwritten digit recognition [35], object recogni-
tion [25], and text classification [14].

Figure 1: A simple linear Support Vector Machine

We shall consider SVMs in the binary classification set-
ting. We are given training data (x1 .xn} that are vec-
tors in some space X s lRRd. We are also given their labels
{yr yn} where yz E (--1,l). In their simplest form, SVMs
are hyperplanes that separate the training data by a maxi-
mal margin (see Fig. 1). All vectors lying on one side of the
hyperplane are labeled as -1, and all vectors lying on the
other side are labeled as 1. The training instances that lie
closest to the hyperplane are called support vectors. More
generally, SVMs allow one to project the original training
data in space X to a higher dimensional feature space F via
a Mercer kernel operator K. In other words, we consider
the set of classifiers of the form: f(x) = Cy,, (~,K(x,,x).

When f(x) 2 0 we classify x as $1, otherwise we classify x
as -1.

When li satisfies Mercer’s condition [l] we can write: K(u, V) =
Q(u). Q(v) where CD : X -+ J= and “.” denotes an inner prod-
uct. We can then rewrite f as:

f(x) = w @(x)1 where w = c oZ@(xE). (1)
i=l

Thus, by using I\- we are implicitly projecting the training
data into a different (often higher dimensional) feature space
F. The SVM then computes the ots that correspond to the
maximal margin hyperplane in F. By choosing different
kernel functions we can implicitly project the training data
from X into spaces F for which hyperplanes in F correspond
to more complex decision boundaries in the original space
X.

Two commonly used kernels are the polynomial kernel K(u, V) =
(u . v + 1)n which induces polynomial boundaries of degree
p in the original space X and the radial basis function ker-
nel K(u, v) = (t~-~(~-~)‘(~-~)) which induces boundaries by
placing weighted Gaussians upon key training instances. In
the remainder of this paper we will assume that the modulus
of the training data feature vectors are constant, i.e., for all
training instances xI,]]@a(~~)]] = X for some fixed X. The
quantity]]@(x;)]] is always constant for radial basis function
kernels, and so the assumption has no effect for this kernel.
For]]@a(~~)]] to be constant with the polynomial kernels we
require that]]x,]] be constant. It is possible to relax this
constraint on a(~,). We shall discuss this option at the end
of Section 4.

108

3. VERSION SPACE
Given a set of labeled training data and a Mercer kernel
li, there is a set of hyperplanes that separate the data in
the induced feature space F. We call this set of consistent
hyperplanes or hypotheses the version space [23]. In other
words, hypothesis f is in version space if for every training
instance x; with label yZ we have that f(xl) > 0 if y2 = 1
and f(x;) < 0 if y; = -1. More formally:

DEFINITION 3.1. Our set of possible hypotheses is given
as:

31 = f 1 f(x) = w,;$dx) where w E W
{ 1

,

where our parameter space W is simply equal to F. The
Version space, V is then defined as:

v = (f E H I v’i E { 1 . n} ytf(xt) > 0)

Notice that since H is a set of hyperplanes, there is a bijec-
tion (an exact correspondence) between unit vectors w and
hypotheses f in H. Thus we will redefine V as:

v = (w E w 1 llwll = 1, ?/%(W @(Xl)) > 0, i = 1.. n}.

Note that a version space only exists if the training data
are linearly separable in the feature space. Thus, we require
linear separability of the training data in the feature space.
This restriction is much less harsh than it might at first
seem. First, the feature space often has a very high dimen-
sion and so in many cases it results in the data set being
linearly separable. Second, as noted by [30], it is possible
to modify any kernel so that the data in the new induced
feature space is linearly separable. This is done by redefin-
ing for all training instances xc: K(x,, x,) + K(x,, x;) + v
where Y is a positive regularization constant. The effect of
this modification is to permit linear non-separability of the
training data in the original feature space.

There exists a duality between the feature space F and the
parameter space W [35, 111 which we shall take advantage of
in the next section: points in F correspond to hyperplanes
in W and vice versa.

Clearly, by definition, points in W correspond to hyper-
planes in F. The intuition behind the converse is that ob-
serving a training instance x; in feature space restricts the
set of separating hyperplanes to ones that classify xI cor-
rectly. In fact, we can show that the set of allowable points
w in W is restricted to lie on one side of a hyperplane in
W. More formally, to show that points in F correspond
to hyperplanes in W, suppose we are given a new training
instance xI with label yt. Then any separating hyperplane
must satisfy y%(w @(xl)) > 0. Now, instead of viewing w
as the normal vector of a hyperplane in F, think of y,@(x,)
as being the normal vector of a hyperplane in W. Thus
Y/I(W. @(xi)) = w. y%Q(x,) > 0 defines a half-space in W.
Furthermore w. y;Q(xz) = 0 defines a hyperplane in W that
acts as one of the boundaries to version space V. Notice
that version space is a connected region on the surface of
a hypersphere in parameter space. See Figure 3(a) for an
example.

SVMs find the hyperplane that maximizes the margin in
feature space F. One way to pose this is as follows:

maximize,Er min,{y,(w @(x2))}
subject to: llwll = 1

yc(w @(XI)) > 0 i = 1 . . .n.

By having the conditions]]w]] = 1 and yI(w @(xi)) > 0
we cause the solution to lie in version space. Now, we can
view the above problem as finding the point w in version
space that maximizes the distance min, {w . ylQ(xl)}. From
the duality between feature and parameter space, and since
]]@(x~)]] = 1, then each y%@(x;) is a unit normal vector of
a hyperplane in parameter space and each of these hyper-
planes delimits the version space. Thus we want to find the
point in version space that maximizes the minimum distance
to any of the delineating hyperplanes. That is, SVMs find
the center of the largest radius hypersphere whose center
can be placed in version space and whose surface does not
intersect with the hyperplanes corresponding to the labeled
instances, as in Figure 3(b). It can be easily shown that
the hyperplanes touched by the maximal radius hypersphere
correspond to the support vectors and that the radius of the
hypersphere is the margin of the SVM.

4. ACTIVE LEARNING
In pool-based active learning we have a pool of unlabeled
instances. It is assumed that the instances x are indepen-
dently and identically distributed according to some under-
lying distribution F(x) and the labels are distributed ac-
cording to some conditional distribution P(y I x).

Given an unlabeled pool U, an active learner 1 has three
components: (f, Q, X). The first component is a classifier,
f : X - (-1, l}, trained on the current set of labeled data
X (and possibly unlabeled instances in U too). The sec-
ond component p(X) is the querying function that, given a
current labeled set X, decides which instance in U to query
next. The active learner can return a classifier f after each
pool-query (online learning) or after some fixed number of
pool-queries.

The main difference between an active learner and a regular
passive learner is the querying component q. This brings us
to the issue of how to choose the next unlabeled instance in
the pool to query. We use an approach that queries points
so as to attempt to reduce the size of the version space as
much as possible. We need one more definition before we
can proceed:

DEFINITION 4.1. Area(V) is the surface area that the ver-
sion space V occupies on the hypersphere llwll = 1.

We wish to reduce the version space as fast as possible. Intu-
itively, one good way of doing this is to choose a pool-query
that halves the version space. More formally, we can use the
following lemma to motivate which instances to use as our
pool-query:

LEMMA 4.2. (Tong t3 Keller, 2000) Suppose we have an
input space X, finite dimensional feature space .ZF (induced

1 0 9

Figure 2: (a) Version space duality. The surface of the hypersphrre rcprcsents unit weight vectors. Each
of the two hyperplancs corresponds to a labeled training instance. Each hypcrplane restricts the area on
the hypersphcrc in which consistent hypotheses can l ie . Here version space is the surface segment of the
hyperspherc closest to the camera. (b) An SVM classif ier in version space. The dark embedded sphere is
the largest radius sphere whose center l ies in version space and whose surface does not intersect with the
hyperplanes . The center of the anbedded sphere corresponds to the SVM, its radius is the margin of the
SVM in F and the training points corresponding to the hyperplanes that i t touches are the support vectors.
(c) Simple Margin Method.

via o kernel I<), and parameter space W. Suppose active
learner e’ always queries instances whose corresponding hy-
petylnnes iu parameter space W h&es the area of the cur-
rent version space. Let e be ong other active learner. Denote
the uersi~n spes of e’ and e after i pool-queries (IS V: and
V, respectively. Let P denote the set of all conditional dis-
tributions of y given x. Then.

with strict inequality whenever there mists u pool-gueryj E
(1 ;) by C that does not halve version space V,-,

This lemma. says that, for any given number of pool-queries,
0’ minimizes the maximum expected size of the version
space, where the maximum is taken over alI conditional dis-
tributions of y given x.

Now, suppose w* t W is the unit parameter vector cor-
responding to the SVM that we would have obtained had
we known the actual labels of off of the data in the pool.
We know that W* must lie in each of the version spaces
VI 1 V2 1 V3.. where V, denotes the version space after
i pool-queries. Thus, by shrinking the size of the version
space as much as possible with each pool-query we are re-
ducing as fast as possible the space in which w* can lie.
Hence, the SVM that we learn from our limited number of
pool-queries will lie close to w*.

This discussion provides motivation for an approach where
we query instances that split the current version space into
two equal parts as much as possible. Given an unlabeled
instance x from the pool, it is not practical to explicitly
compute the sizes of the new version spaces V- and V+
(i.e., the version spaces obtained when x is labeled as -1
and +I respectively). There is way of approximating this
procedure as noted by [33]:

Simple Method. Recall from section 3 that, given data
{x, .x;) and labels (91 y,}, the SVM unit vector wI

obtained from this data is the center of the largest hyper-
sphere that can fit inside the current version space V,. The
position of w, in the version space V, clearly depends on the
shape of the region V,, however it is often approximately in
the center of the version space. Now, we can test each of the
unlabeled instances x in the pool to see how close their car-
responding hyperplanes in W come to the centrally placed
w,. The closer a hyperplane in W is to the point w,, the
more centrally it is placed in version space, and the more
it bisects version space. Thus we can pick the unlabeled
instance in the pool whose hyperplane in W comes closest
to the vector w,. For each unlabeled instance x, the short-
est distance between its hyperplane in W and the vector
w, is simply the distance between the feature vector C’(x)
and the hyperplane w, in F ~ which is easily computed by
Iw, Q(x)l. This results in the natural Simple rule:

l Learn an SVM on the existing labeled data and choose
as the next instance to query the pool instance that
comet closest to the hyperplane in FT.

Figure 3(c) presents an illustration. In the stylized picture
we have flattened out the surface of the unit weight vector
hypersphere that appears in Figure 3(a). The white area
is version space V, which is bounded by solid lines corre-
spending to labeled instances. The five dotted lines repre-
sent unlabeled instances in the pool. The circle represents
the largest radius hypersphere that can fit in version space.
Note that the edges of the circle do not touch the solid lines
~ just as the dark sphere in 3(b) does not meet the hyper-
planes on the surface of the larger hypersphere (they meet
somewhere under the surface). The instance b is closest to
the SVM w. and so we will choose to query b.

As noted by [33] there exist more sophisticated approxima-
tions that one cau perform. Rowever, these methods are
significantly more computation.& intensive. For the task
of relevance feedback, a fast response time for determining
the next image to present to the user is so critically impor-

110

tant that these other approximations are not practical.

Our SVMActtve image retrieval system uses radial basis func-
tion kernels. As noted in Section 2, radial basis function
kernels have the property that 11Q(xi)ll = A. The Simple
querying method can still be used with other kernels when
the training data feature vectors do not have a constant
modulus, but the motivating explanation no longer holds
since the SVM can no longer be viewed as the center of the
largest allowable sphere. However, alternative motivations
have recently been proposed by Campbell, Cristianini and
Smola (2000) that do not require a constraint on the mod-
ulus.

For the image retrieval domain, we also have a need for per-
forming multiple pool-queries at the same time. It is not
practical to present one image at a time for the user to
label ~ the user is likely to quickly lose patience after a
few rounds of pool-querying. To prevent this from happen-
ing we would like to present the user with multiple images
(say, twenty) at each round of pool-querying. Thus, for each
round, the active learner has to choose not just one image
to be labeled but twenty. Theoretically it would be possi-
ble to consider the size of the resulting version spaces for
each possible labeling of each possible set of twenty pool-
queries but clearly this is impractical. Thus instead, for
matters of computational efficiency, our SVMA,.~%~~ system
takes the simple approach of choosing the pool-queries to be
the twenty images closest to its separating hyperplane.

1 dter Name Hesolution Representation
Masks Coarse Appearance of culture colors
Spread Coarse Spatial concentration of a color
Elongation Coarse Shape of a color
Hzstogrums M edium Distribution of colors
Average Medium Similarity comparison within

the same culture color
Varzance P me bimdarity comparison withm

the same culture color

Table 1: Multi-resolution Color Features.

others, they acquire finer features. Similarly, for some image
applications (e.g., for detecting image replicas), employing
coarse features is sufficient; for other applications (e.g., for
classifying images), employing finer features may be essen-
tial. An image search engine thus must have the flexibility
to model subjective perception and to satisfy a variety of
search tasks.

Our image retrieval system employs a multi-resolution image
representation scheme [4]. In this scheme, we characterize
images by two main features: color and texture. We consider
shape as attributes of these main features.

5.1 Color
Although the wavelength of visible light ranges from 400
nanometers to 700 nanometers, research [lo] shows that the
colors that can be named by all cultures are generally limited
to eleven. In addition to black and white, the discernible
colors are red, yellow, green, blue, brown, purple, pink, orange
and gray.

It has been noted [33] that the Simple querying algorithm
used by SVMActzue can be unstable during the first round
of querying. To address this issue, SVMA~~~~~ always ran-
domly chooses twenty images for the first relevance feedback
round. Then it uses the Simple active querying method on
the second and subsequent rounds.

SVMA~~~~~ Algorithm Summary
To summerize, our SVMA ctzve system performs the following
for each round of relevance feedback:

. Learn an SVM on the current labeled data

. If this is the first feedback round, ask the user to label
twenty randomly selected images. Otherwise, ask the
user to label the twenty pool images closest to the SVM
boundary.

.4fter the relevance feedback rounds have been performed
SVM A,.tzve retrieves the top-lc most relevant images:

. Learn a final SVM on the labeled data.

l The final SVM boundary separates “relevant” images
from irrelevant ones. Display the k “relevant” images
that are farthest from the SVM boundary.

5. IMAGE CHARACTERIZATION
We believe that image characterization should follow hu-
man perception [lo]. In particular, our perception works in
a multi-resolution fashion. For some visual tasks, our eyes
may select coarse filters to obtain coarse image features; for

We first divide color into 12 color bins including 31 bins for
culture colors and one bin for outliers [12]. At the coars-
est resolution, we characterize color using a color mask of
12 bits. To record color information at finer resolutions,
we record eight additional features for each color. These
eight features are color histograms, color means (in H, S and
V channels), color variances (in H, S and V channel), and
two shape characteristics: elongation and spreadness. Color
elongation characterizes the shape of a color and spreadness
characterizes how that color scatters within the image [16].
Table 1 summarizes color features in coarse, medium and
fine resolutions.

5.2 Texture
Texture is an important cue for image analysis. Studies [21,
31, 32, 201 have shown that characterizing texture features in
terms of structuredness, orientation, and scale (coarseness)
fits well with models of human perception. A wide variety
of texture analysis methods have been proposed in the past.
We choose a discrete wavelet transformation (DWT) using
quadrature mirror filters [31] because of its computational
efficiency.

Each wavelet decomposition on a 2-D image yields four subim-
ages: a $ x i scaled-down image of the input image and its
wavelets in three orientations: horizontal, vertical and di-
agonal. Decomposing the scaled-down image further, we
obtain the tree-structured or wavelet packet decomposition.
The wavelet image decomposition provides a representation
that is easy to interpret. Every subimage contains infor-

1 1 1

Coarse (Level I)
Medium (Level 2)

Figure 3: Multi-resolution Texture Features.

mation of a specific scale and orientation and also retains
spatial information. We obtain nine texture combinations
from subimages of three scales and three orientations. Since
each subimage retains the spatial information of texture,
we also compute elongation and spreadness for each texture
channel. Figure 3 summarizes texture features.

Now, given an image, we can extract the above color and
texture information to produce a 144 dimensional vector of
numbers. We use this vector to represent the image. Thus,
the space X for our SVMs is a 144 dimensional space, and
each image in our database corresponds to a point in this
space.

6. EXPERIMENTS
For our empirical evaluation of our learning methods we
used three real-world image datasets: a four-category, a
ten-category, and a fifteen-category image dataset where
each category consisted of 100 to 150 images. These im-
age datasets were collected from Core1 Image CDs and the
Internet.

. Four-category set. The 602 images in this dataset be-
long to four categories - architecture, flowers, land-
scape, and people.

. Ten-category set. The 1277 images in this dataset be-
long to ten categories - architecture, bears, clouds,
flowers, landscape, people, objectionable images, tigers,
tools, and wuaves. In this set, a few categories were
added to increase learning difficulty. The tiger cate-
gory contains images of tigers on landscape and water
backgrounds to confuse with the landscape category.
The objectionable images can be confused with people
wearing little clothing. Clouds and waves have sub-
stantial color similarity.

. Fifteen-category set. In addition to the ten categories
in the above dataset, the total of 1920 images in this
dataset includes elephants, fabrics, fireworks, food, and
texture. We added elephants with landscape and wa-
ter background to increase learning difficulty between
landscape, tigers and elephants. We added colorful
fabrics and food to interfere with flowers. Various tex-
ture images (e.g., skin, brick, grass, water, etc.) were
added to raise learning difficulty for all categories.

To enable an objective measure of performance, we assumed
that a query concept was an image category. The SVMA~~~~~
learner has no prior knowledge about image categoriesr. It
treats each image as a 144-dimension vector described in
Section 5. The goal of ~~~~~~~~~ is to learn a given con-
cept through a relevance feedback process. In this process,
at each feedback round SVMA~~%~~ selects twenty images to
ask the user to label as “relevant” or “not relevant” with
respect to the query concept. It then uses the labeled in-
stances to successively refine the concept boundary. After
the relevance feedback rounds have finished SVMA~~%~~ then
retrieves the top-k most relevant images from the dataset
based on the final concept it has learned. Accuracy is then
computed by looking at the fraction of the k returned result
that belongs to the target image category. Notice that this is
equivalent to computing the precision on the top-k images.
This measure of performance appears to be the most appro-
priate for the image retrieval task - particularly since, in
most cases, not all of the relevant images will be able to be
displayed to the user on one screen. As in the case of web
searching, we typically wish the first screen of returned im-
ages to contain a high proportion of relevant images. We are
less concerned that not every single instance that satisfies
the query concept is displayed. As with all SVM algorithms,
~~~~~~~~~  requires at least one relevant and one irrelevant
image to function. In practice a single relevant image could
be provided by the user (e.g., via an upload to the system)
or could be found by displaying a large number of randomly
selected images to the user (where, perhaps, the image fea-
ture vectors are chosen to be mutually distant from each
other so as to provide a wide coverage of the image space).
In either case we assume that we start off with one randomly
selected relevant image and one randomly selected irrelevant
image

6.1 SVMA~~$~~  Experiments
Figures 4(a-c)  show the average top-k accuracy for the three
different sizes of data sets. We considered the performance
of  SVM~ctzue after each round of relevance feedback. The
graphs indicate that performance clearly increases after each
round. Also, the SVMA~~~~~  algorithm’s performance de-
grades gracefully when the size and complexity of the database
is increased - for example, after four rounds of relevance
feedback it achieves an average of loo%,  95%, 88% accuracy
on the top-20 results for the three different sizes of data sets
respectively. It is also interesting to note that SVMA~~%~~  is
not only good at retrieving just the top few images with high
precision, but it also manages to sustain fairly high accuracy
even when asked to return larger numbers of images. For
example, after five rounds of querying it attains 99%) 84%
and 76% accuracy on the top-70 results for the three differ-
ent sizes of data sets respectively. SVMA,.~%~~  uses the active
querying method outlined in Section 4. We examined the
effect that the active querying method had on performance.
Figures 5(a) and 5(b) compare the active querying method
with the regular passive method of sampling. The passive

‘Unlike some recently developed systems [36]  that contain a
semantical layer between image features and queries to as-
sist query refinement, our system does not have an explicit
semantical layer. We argue that having a hard-coded seman-
tical layer can make a retrieval system restrictive. Rather,
dynamically learning the semantics of a query concept is
more flexible and hence makes the system more useful.

112



Figure 4: (a) Averago  top-k aceoracy  over the four-category dataset.  (b)  Average top-l ;  accuracy over the
ten-category  dataset.  (c)  Average top-k  accuracy over the f i f teen-category dataset.  Standard error  bars are
smaller than the curves’  symbol size. Legend ordor  reflects order of curves.

(a) (b) (cl

Figure 5: (a) Act%  and regular passive learning on the fifteen-category dataset  after three rounds of querying.
(b)  Active and regular passive learning on the  f i f teen-category datasct  after f ive rounds of querying. (c)
Comparison bctwccn  asking ten images per  pool-query round and twenty images per  pool-querying round
on the  fifteen-category dataset.  Standard error  bars axe  smaller than the curves’ symbol size. Legend order
rcfleets  order of c&&.

method chooses random images from the pool to be labeled.
This method is the one that is typically used with SVMs
since it creates a,  randomly selected data set. It is clear that
the ose  of active learning is beneficial in the image retrieval
domain. There is a significant increase in performance from
using the active method. SVMA~~,~~  displays 20 images per
pool-querying round. There is a tradeoff between the num-
ber of images to be displayed in one round, and the number
of querying rounds. The fewer images displayed per round,
the lower the performance. However, with fewer images per
round we may be able to conduct more rounds of querying
and thus increase our performance. Figure 5(c) considers the
effect  of displaying only ten images per round. In this erper-
iment  our  first round consisted of displaying twenty random
images sod  then, on the second and subsequent rounds of
querying, active learning with 10 or 20 images is invoked.
We notice that there is indeed a benefit to asking (20 ran-
dom + two rounds  of IO images) over  asking (20 random
+ one round of 20 images). This is unsurprising since the

active learner has more control and freedom to adapt when
asking two rounds of 10 images rather than one round of 20.
What is interesting is that asking (20 random + two rounds
of 20 images) is far, far better than asking (20 random + two
rounds of 10 images). The increase in the cost  to users of
asking 20 images per round is often negligible since osers  can
pick out relevant images easily. Furthermore, there is virtu-
ally no additional computational cost in calculating the 20
images to query over  the 10 images to query. Thus, for this
particular task, we believe that it is worthwhile to display
around 20 images per screen and limit the number of query-
ing rounds, rather than display fewer images per saeen and
use many mxe  querying rounds. We also investigated
how performance altered when various aspects of the algo-
rithm were changed. Table 2 shows how all three of the
texture resolutions are important. Also, the performance
of the SVM appears to be greatest when all of the texture
resolutions are included (although in this case  the difference
is not statistically significant). Table 3 indicates how other

113



(b)

Figure 6: (a) Average top-k accuracy over  the ten-category dataset.  (b) A verage top4  accuracy cwer the
fifteen-category dataset.

Texture I Top-50
features A&lKKy
None 80.6 * 2 3
Fine 85.9 * 1:7
Medium 84.7 i 1.6
COUX 85.8 f 1.3
Ail 86.3 * 1.8

Table 2: Average top-50 accuracy over  the four-
category data set  using a regular SVM trained  on
30 images. Texturc spatial features were omitted.

Top-50 T0p-100 Top-150
Degree 2 P’olymxmal 95 9

9217
zt 0.4 86.1 * 0.5 72.8 5 0.4

Degree 4 Polynomial * 0.6 8 2 . 8 l 0 . 6 69.0 zk 0.5
Radial Basis 06.8 * 0.3 89.1 * 0.4 76.0 * 0.4

Table 3: Accuracy on four-category data set aftcr
three querying  rounds using various kernels. Bold
type indicates statistically significant results.

SVM kernel functions perform on the image retrieval task
compared to the radial basis function kernel. It appears that
the radial basis function kernel is the most suitable for this
feature space. One other important aspect of any relevance
fcedback algorithm is the wall clock time that it takes to
generate the next  pool-queries. Relevance feedback is an in-
teractive task, and if the algorithm takes too long then the
user is likely to lose patience and be less satisfied with the
experience. Table 4 shows that ~~~~~~~~~  averages about a
second on a Sun Workstation to determine the 20 most in-
formative images for the US~IS  to label. Retrieval of the 150
most relevant images takes an similar amount of time and
computing the final SVM model never exceeds two seconds.

Dataset

T73r
10 cat
15 cat

6.2 Scheme Comparison
We  also compared SVMA~~,~~  with two traditional query re-
finement methods: query point movement (QPM) and query
ezpponsion  (QEX). In this experiment, each scheme returned
the 20 most relevant images after up to five rounds of rele-
vance feedback. To ensure that the comparison to SVMA~~,.~
WLS  fair, we seeded both schemes with one randomly se-
lected relevant image to generate the first round of images.
On the ten-category image dataset,  Figure 6(a) shows that
SVMA+~~  achieves nearly 90% accuracy on the top-20 rem
suits after three rounds of relevance feedback, whereas the
nccuracies  of both QPM and QEX never reach 80%. On
the fifteen-image category dataset,  Figure 6(b) shows that
SVMnctzuc  outperforms the others by even wider margins.
SVMact,ue  reaches 80% top-20 accuracy after three rounds
and 94% after five rounds, whereas &PM  and QEX cannot
achieve 65% accuracy.

These results hardly surprise us. Traditional information
retrieval schemes require a large number of image instances
to achieve any substantial refinement. By refined current
relevant instances both &PM  and QEX tend to be fairly
localized in their exploration of the image space and hence
rather slow in exploring the entire space. During the rel-
evance feedback phase SVMA~~,,,  takes both the relevant
and irrelevant images into account when choosing the next
pool-queries. Furthermore, it chooses to ask the user to la-
bel images that it regards as nuxt informative  for learning
the query concept, rather than those that have the most
likelihood of being relevant. Thus it tends to explore the
feature space more aggressively.

Figures 7 and 8 show an example run of the SVMA~~G
system. For this run, we are interested in obtaining archi-
tecture images. In Figure 7 we initialize the search by giving
S’JMactive one relevant and one irrelevant image. We then

yn have three feedback rounds. The images that SVMactlveDataset round of 20 Computing Retrieving tb.,
Size q u e r i e s  (sea)  final SVLM 150 images asks us to label in these three feedback rounds are images
602 0.34 * 0 00

0.71 l 0:01
os*rJo1

1277 Lb3 * d.03
0.43 f 0 02
0.93 f 0:03

that SVMA~~,~~  will find most informative to know about.
For example, we see that it asks us to label a number of

1920 1.09 * 0.02 1.74 l 0.05 1.37 i 0.04 landscane imaees  and other imaees with a blue or ~r.w

Table 4: Average run timcs in seconds
background with  something in thi  foreground. The f&d-
back rounds allow SVMacta,,e  to narrow down the types of

114



Feedback Round 1

Feedback Round 2 Feedback Round 3

Figure 7: Searching for xchitecture  images. SVMA,,~..  Feedback phase.

images that  we like. When it comes  to the retrieval phase
(Figure  7) SVMacttve returns, with high precision, L.  large

most uncertain about)

varitey of different architecture images, ranging from old
buildings to modern cityscapes.

7. RELATED WORK
There have been several studies of active learning for clas-
sification in the machine learning community. The query
hy  committee algorithm [29,  S]  uses  a.  distribution over  all
possible classifiers and attempts to greedily reduce the en-
tropy of this distribution. This general purpose algorithm
has been applied in a number of domains’ using classifiers
(such  as Naive Bayes  classifiers (7, 221) for which specifying
and sampling classifiers from a distribution is natural. Prob-
abilistic models such as the Naive B&yes  classifier provide ia-
terpretable models and principled ways to incorporate prior
knowledge and data with missing values. However, they typ-
ically do not perform as well as discriminative methods such
as  svbfls  [14, S].

Relevance feedback techniques proposed by the informa-
tion retrieval and database communities also perform non-
random sampling. The study of [27]  puts these query refine-
ment approaches into three  categories: query  reweighting,

query point movement and query  expansion.

Lewis and Gale (1994) focused on the text classification
task and introduced uncertainty sampling using logistic re-
gression  and also decision trees [17].  SVMA,~,,,‘s  querying
method is essentially the ame  as their uncertainty sampling
method (choose the instance that  our  current classifier is

.  Query  reweighting  and gaery point  mouenwnl  [13, 2 4 ,  261.
Both query reweighting and query point movement use
nearest-neighbor sampling: They return top ranked ob-
jects to be marked by the  user and refine the query based
on the feedback. These methods tend to require a large
number of image instances to achieve any substantial re-
finement since they do not tend to explore the image space
aggressively.

. Query ezpansion  [27,  371.  The query  ez,xnsion approach
can be regarded as a multiple-instances sampling approach.
The samples of the next round are selected from the neigh-
borhood (not necessarily the nearest ones) of the positive-
labeled instances of the previous round. The study of [27]
shows that query expnnsion  achieves only a slim margin of
improvement (about 10% in precision/recall) over  query
point movement.

2Altlmugh, to our knowledge, not to the image retrieval do- For  image retrieval, the PicHunter system [6]  uses  Bayesian
main. prediction to infer the goal image, based upon the users’

115



Second Srree,~  of Results

Fourth Screen of Results

Fifth Screen of Results Sixth Screen uf Results

Figure 8: Searching for architecture images.  SVMncti..  Retrieval phase.

116



actions. The system shows that employing active learning
can drastically cut down the number of iterations (up to 80%
in some experiments). However the authors also point out
that their scheme is computationally intensive, since it needs
to recompute the conditional probability for all unlabeled
samples after each round of user feedback and hence may
not scale well with dataset size.

8. CONCLUSIONS AND FUTURE WORK
We have demonstrated that active learning with support
vector machines can provide a powerful tool for searching
image databases, outperforming a number of traditional query
refinement schemes. SVMA,~,,,  not only achieves consis-
tently high accuracy on a wide variety of desired returned
results, but also does it quickly and maintains high preci-
sion when asked to deliver large quantities of images. Also,
unlike recent systems such as SIMPLIcity  [36],  it does not
require an explicit semantical layer to perform well.

There are a number of interesting directions that we wish to
pursue. The running time of our algorithm scales linearly
with the size of the image database both for the relevance
feedback phase and for the retrieval of the top-k images.
This is because, for each querying round, we have to scan
through the database for the twenty images that are closest
to the current SVM boundary, and in the retrieval phase we
have to scan the entire database for the top k most relevant
images with respect to the learned concept. ~~~~~~~~~  is
practical for image databases that contain a few thousand
images; however, we would like to find ways for it to scale
to larger sized databases.

For the relevance feedback phase, one possible way to cope
with a large image database is, rather than using the entire
database as the pool, instead sample a few thousand images
from the database and use these as the pool of potential
images with which to query the user. The technique of sub-
sampling databases is often used effectively when performing
data mining with large databases (e.g., [5]). It is plausible
that this technique will have a negligible effect on overall
accuracy, while significantly speeding up the running time
of the SVMA,-~$~~  algorithm on large databases. Retrieval
speed of relevant images in large databases can perhaps be
sped up significantly by using intelligent clustering and in-
dexing schemes [19].

The second direction we wish to pursue is an issue that
faces many relevance feedback algorithms: that of designing
methods to seed the algorithm effectively. At the moment
we assume that we are presented with one relevant image
and one irrelevant image. It would be beneficial to modify
SVMA,.~%~~  so that it is not dependent on having a relevant
starting image. We are currently investigating ways of using
SVMA~~~~~‘S  output to explore the feature space effectively
until a single relevant image is found.

An alternative approach for finding a single relevant image
is to use another algorithm to seed SVMA,~,,,.  For example,
the MEGA  algorithm [3]  that we have developed is a sepa-
rate study does not require seeding with a relevant image. If
all of the images generated in the first round of its relevance
feedback are irrelevant, it will use the negative images to
reduce the set of potentially relevant images substantially

so that a relevant image will be generated in the next round
with high probability. Indeed, preliminary experiments that
use MEGA  to find and initial relevant image, and SVM,J~~~~~
to perform relevance feedback have produced promising re-
sults.

Transduction takes advantage of not only the labeled im-
ages but also the unlabeled images to learn a user’s query
concept. Intuitively, the unlabeled images are likely to be
clustered and this provides us with some extra information
which we may be able to use to refine our idea of what the
user’s query concept may be. Transduction has been suc-
cessfully applied to regular passive SVMs  for text classifica-
tion [15]  showing that using unlabeled data can indeeed im-
prove performance. An exciting direction is to see whether
transduction can be applied to the image retrieval domain
and furthermore, whether it can also be combined with ac-
tive learning to provide yet further increases in performance
for the image retrieval task.

9. ACKNOWLEDGEMENTS
Simon Tong was supported by D,4RPA’s  Information As-
surance program under subcontract to SRI International,
and by ONR MURI N00014-00-1-0637.

10.
PI

REFERENCES

PI

[31

C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and linowledge
Discovery, 2:121-167,  1998.
C. Campbell, N. C&&mini,  and A. Smola. Query learning
with large margin classifiers. In Proceedings of the
Seventeenth International Conjerence on  Machine
Learning, 2000.
E. Chang and B. Li. Megct  - the maximizing expected
generalization algorithm for learning complex query
concepts (extended version). Technical Report
http://www-db.stanjord.edu/Nechang/mega.ps,  November
2000.

[41

151

k51

171

k31

PI

[lOI

[Ill

E. Chrtng,  B. Li, and C. Li. Towards perception-based
image retrieval. IEEE Content-Based Access of Image and
Video Libraries, pages 101-105, June 2000.
S. Chaudhuri, V. Narasayyct, and R. Motwani. Random
sampling for histogram construction: How much is enough?
ACM Sigmod, May 1998.
I. J. Cox, M. L. Miller, T. P. Minka,  T. V. Papathomas,
and P. N. Yianilos. The bay&an  image retrieval system,
pichunter: Theory, implementation and psychological
experiments. IEEE Transaction on Image Processing (to
appear) ,  2000.
I. Dagan  and S. Engelson. Committee-based sampling for
training probabilistic classifiers. In Proceedings of the
Tweljth  International Conjerence 01~  Machine Learning,
pages 150 157. Morgan Kaufmann,  1995.
S. Dumais, J. Platt, D. IIeckerman,  and M. Sahami.
Inductive learning algorithms and representations for text
categorization. In Proceedings of the Seventh International
Conjerence on  Injormation  and Knowledge Management.
ACM Press, 1998.
Y. Freund,  H. Seung,  E. Shamir, and N. Tishby. Selective
sampling using the Query by Committee algorithm.
Machine Learning, 28:133-168,  1997.
E. B. Goldstein. Sensation and Perception (sth Edition).
Brooks/Cole, 1999.
R. Herbrich, T. Graepel, and C. Campbell. Bayes  point
machines: Estimating the bayes point in kernel space. In
International Joint Conjerence on  Artificial Intelligence
Workshop on Support Vector Machines, pages 23-27,  1999.

117



iI21

[I31

P41

P51

[I61

[I71

[IS1

[W

PO1

1211

WI

[231

[24l

[251

[‘%

T. Joachims. Text categorization with support vector
machines. In Proceedings  of the European  C~njerence  on
Machine Learning. Springer-Verlrtg,  1998.
T. Joachims. Transductive  inference for text classification
using support vector machines. In Proceedings of the
Sixteenth International Conference 01~  Machine Learning,
pages 200-209.  Morgan Kaufmann, 1999.
J.-G. Leu. Computing a shape’s moments from its
boundary. Pattern Recognition, pages Vo1.24,
No.lO,pp.949  957, 1991.
D. Lewis and 3.  Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Proceedings of the
Eleventh International Conference on  Machine Learning,
pages 148 156. Morgan Kaufmann, 1994.
D. Lewis and  W. Gale. A sequential algorithm for training
text classifiers. In Proceedings of the Seventeenth Annual
International ACM-SIGIR Conjerence on Research and
Development in Information Retrieval, pages 3-12.
Springer-Verlag, 1994.
C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.
Clustering for approximate similarity queries in
high-dimensional spaces. IEEE Transaction on Knowledge
and Data Engineering (to appear), 2001.
W. Y. Ma and H. Zhang. Benchmarking of image features
for content-based retrieval. Proceedings of Asilomar
Conjerence on Signal, Systems &  Computers, 1998.
B. Manjunath,  P. Wu, S. Newsam,  and II. Shin. A texture
descriptor for browsing and similarity retrieval. Signal
Processing Image Communication, 2001.
A. McCallum  and K. Nigam.  Employing EM in pool-based
active lemming for text classification. In Proceedings of the
Fifteenth International Conference on Machine Learning.
Morgan Kaufmann, 1998.
T. Mitchell. Generalization as  search. Artijiciai
Intelligence, 28:203-226,  1982.
M. Ortega, Y. Rui, K. Chakrabarti, A. Warshavsky,
S. Mehrotra, and T. S. IIuang.  Supporting ranked boolean
similarity queries in mars. IEEE Transaction on Ir’nowledge
and Data Engineering, 10(6):905-925,  December 1999.
C. Papageorgiou,  M. Oren,  and T. Poggio. A general
framework for object detection. In Proceedings of the
International ConJerence  on Computer Vision, 1998.
K. Porkaew, K. Chakmbmti,  and S. Mehrotm.  Query
refinement for multimedia similarity retrieval in mars.
Proceedings of A CM Multimedia, November 1999.

[27]  K. Porkaew, S. Mehrota,  and M. Ortega. Query
reformulation for content based multimedia retrieval in
mars. ICMCS,  pages 747-751, 1999.

[28]  G. Schohn and D. Cohn. Less is more: Active learning with
support vector machines. In Proceedings of the Seventemth
International Conference on  Machine Learning, 2000.

[29]  H. Seung,  M. Opper,  and  H. Sompolinsky. Query by
committee. In Proceedings oj the Fifth Workshop on
Computational Learning Theory, pages 287-294.  Morgan
Kaufmann, 1992.

[30]  J. Shave-Taylor and N. Cristictnini.  Further results on the
margin distribution. In Proceedings of the Twelfth Annual
Conference on Computational Learning Theory, pages
278.-285,  1999.

[31]  J. Smith and S.-F. Chang. Automated image retrieval
using color and texture. IEEE Transaction on Pattern
Analysis and Machine Intelligence, November 1996.

[32]  H. Tamura,  S. Mori,  and T. Yamawaki.  Texture features
corresponding to visual perception. IEEE Transaction on
Systems Man Cybernet  (SMC), 1978.

K. A. Hua,  K. Vu, and J.-H. Oh. Sammatch: A flexible and
efficient sampling-based image retrieval technique for image
databases. Proceedings of ACM Multimedia, November
1999.
Y. Ishikawa, R. Subramanya,  and C. Faloutsos.
Mindreader: Querying databases through multiple
examples. VLDB, 1998.

[33]  S. Tong and D. Koller. Support vector machine active
learning with applications to text classification.
Proceedings of the 17th International Conjerence  on
Machine Learning, pages 401-412,  June 2000.

[34]  V. Vapnik.  Estimation of Dependences  Based on Empirical
Data. Springer Verlag,  1982.

[35]  V. Vapnik. Statistical Learning Theory. Wiley, 1998.
[36]  J. Wang, J. Li, and G. Wiederhold. Simplicity:

Semantics-sensitive integrated matching for picture
libraries. ACM Multimedia Conference, 2000.

[37]  L. Wu,  C. Faloutsos, K. Sycara, and T. R. Payne. Falcon:
Feedback adaptive loop for content-based retrieval. The
26th VLDB Conference, September 2000.

118


