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ABSTRACT 
Azure Data Lake Store (ADLS) is a fully-managed, elastic, 
scalable, and secure file system that supports Hadoop distributed 
file system (HDFS) and Cosmos semantics. It is specifically 
designed and optimized for a broad spectrum of Big Data analytics 
that depend on a very high degree of parallel reads and writes, as 
well as collocation of compute and data for high bandwidth and 
low-latency access. It brings together key components and features 
of Microsoft’s Cosmos file system—long used internally at 
Microsoft as the warehouse for data and analytics—and HDFS, and 
is a unified file storage solution for analytics on Azure. Internal and 
external workloads run on this unified platform. Distinguishing 
aspects of ADLS include its support for multiple storage tiers, 
exabyte scale, and comprehensive security and data sharing. We 
discuss ADLS architecture, design points, and performance. 
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1. INTRODUCTION 
 The Cosmos file system project at Microsoft began in 2006, after 
GFS [11]. The Scope language [7] is a SQL dialect similar to Hive, 
with support for parallelized user-code and a generalized group-by 
feature supporting Map-Reduce. Cosmos and Scope (often referred 
to jointly as “Cosmos”) are operated as a service—users company-
wide create files and submit jobs, and the Big Data team operates 
the clusters that store data and process the jobs. Virtually all groups 
across the company, including Ad platforms, Bing, Halo, Office, 
Skype, Windows and XBOX, store many exabytes of 
heterogeneous data in Cosmos, doing everything from exploratory 
analysis and stream processing to production workflows.  
While Cosmos was becoming a foundational Big Data service 
within Microsoft, Hadoop emerged meantime as a widely used 

open-source Big Data system, and the underlying file system HDFS 
has become a de-facto standard [28]. Indeed, HDInsight is a 
Microsoft Azure service for creating and using Hadoop clusters. 
ADLS is the successor to Cosmos, and we are in the midst of 
migrating Cosmos data and workloads to it. It unifies the Cosmos 
and Hadoop ecosystems as an HDFS compatible service that 
supports both Cosmos and Hadoop workloads with full fidelity.  

It is important to note that the current form of the external ADL 
service may not reflect all the features discussed here since our goal 
is to discuss the underlying architecture and the requirements that 
informed key design decisions. 

1.1 Learnings, Goals, and Highlights 
Our work has been deeply influenced by learnings from operating 
the Cosmos service (see Section 1.2), and from engaging closely 
with the Hadoop community. Tiered storage in ADLS (see Section 
1.3) grew out of a desire to integrate Azure storage with Cosmos 
[6] and related exploratory work in CISL and MSR [21], and 
influenced (and was influenced by) work in Hadoop (e.g., 
[10][15]). Based on customer feedback, an overarching objective 
was to design a highly secure (see Section 6) service that would 
simplify management of large, widely-shared, and valuable / 
sensitive  data collections. Specifically, we have sought to provide: 

- Tier/location transparency (see Section 1.3) 
- Write size transparency (see Section 4.5) 
- Isolation of noisy neighbors (see Section 4.7) 

 
This focus on simplicity for users has had a big influence on ADLS. 
We have also sought to provide support for improvements in the 
end-to-end user experience, e.g., store support for debugging failed 
jobs (see Section 4.6), and to simplify operational aspects from our 
perspective as cloud service providers (see Section 1.2). 
 
The key contributions of ADLS are: 

• From an ecosystem and service perspective, ADLS is the 
successor to the Cosmos service at Microsoft, and 
complements Azure Data Lake Analytics (ADLA) [1], a 
YARN-based multi-tenanted environment for Scope and its 
successor U-SQL [30], as well as Hive, Spark and other Big 
Data analytic engines that leverage collocation of compute 
with data. Thus, ADLA and ADLS together unify Cosmos and 
Hadoop, for both internal and external customers, as 
Microsoft’s warehouse for data and analytics. ADLS is also a 
very performant HDFS compatible filesystem layer for 
Hadoop workloads executing in Azure public compute, such 
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as Microsoft’s HDInsight service and Azure offerings from 
vendors such as Cloudera and Hortonworks. 

• Technically, ADLS makes significant advances with its 
modular microservices architecture, scalability, security 
framework, and extensible tiered storage. The RSL-HK ring 
infrastructure (Section 3) combines Cosmos’s Paxos-based 
metadata services with SQL Server’s columnar processing 
engine (Hekaton) to provide an extremely scalable and robust 
foundation, illustrating the value of judiciously combining key 
ideas from relational databases and distributed systems. The 
naming service that builds on it provides a flexible yet scalable 
hierarchical name space. Importantly, ADLS is designed from 
the ground up to manage data across multiple tiers, to enable 
users to store their data in any combination of tiers to achieve 
the best cost-performance trade-off for their workloads. The 
design is extensible in allowing new storage tiers to be easily 
added through a storage provider abstraction (Section 5). 

ADLS is the first public PaaS cloud service that is designed to 
support full filesystem functionality at extreme scale. The approach 
we have taken to solve the hard scalability problem for metadata 
management differs from typical filesystems in its deep integration 
of relational database and distributed systems technologies. Our 
experience shows the potential (as in [34] and [3]) in judicious use 
of relational techniques in non-traditional settings such as 
filesystem internals. See Sections 3 and 4.4 for a discussion. 
We now go a little deeper into our experience with Cosmos, and the 
notion of tiered storage, before presenting ADLS in later sections. 

1.2 ADLS Requirements from Cosmos  
The scale of Cosmos is very large. The largest Hadoop clusters that 
we are aware of are about 5K nodes; Cosmos clusters exceed 50K 
nodes each; individual files can be petabyte-scale, and individual 
jobs can execute over more than 10K nodes. Every day, we process 
several hundred petabytes of data, and deliver tens of millions of 
compute hours to thousands of internal users. Even short outages 
have significant business implications, and operating the system 
efficiently and reliably is a major consideration.  
Cosmos tends to have very large clusters because teams value 
sharing data as in any data warehouse, and as new data is derived, 
more users consume it and in turn produce additional data. This 
virtuous “information production” cycle eventually leads to our 
exceeding a cluster’s capacity, and we need to migrate one or more 
teams together with their data (and copies of other datasets they 
require) to another cluster. This migration is a challenging process 
that takes several weeks, requires involvement from affected users, 
and must be done while ensuring that all production jobs continue 
to execute with the desired SLA. Similarly, such large clusters also 
cause resource issues such as TCP port exhaustion.  

Thus, a key design consideration was to improve ease of operations, 
including upgrades and transparent re-balancing of user data. At the 
scale ADLS is designed to operate, this is a big overhead, and 
lessons learnt from Cosmos informed our design. Specifically, the 
ADLS naming service provides a hierarchical file and folder 
namespace that is independent of physical data location, with the 
ability to rename and move files and folders without moving the 
data. Further, ADLS is designed as a collection of key 
microservices (for transaction and data management, block 
management, etc.) that are also de-coupled from the physical 

clusters where data is stored. Together, these capabilities 
significantly improve the ease of operation of ADLS. 

Security and access control are paramount. ADLS has been 
designed from the ground up for security. Data can be secured per-
user, per-folder, or per-file to ensure proper confidentiality and 
sharing. ADLS leverages Azure Active Directory for 
authentication, providing seamless integration with the Azure cloud 
and traditional enterprise ecosystems. Data is stored encrypted, 
with options for customer- and system-owned key management. 
The modular implementation enables us to leverage a wide range 
of secure compute alternatives (from enclaves to secure hardware). 

Finally, we have incorporated some useful Cosmos features that are 
not available in other filesystems. Notably, the efficient 
concatenation of several files is widely used at the end of Scope/U-
SQL jobs to return the result as a single file. This contrasts with 
Hive jobs which return the results as several (usually small) files, 
and thus incurring overhead for tracking artificially large numbers 
of files. We describe this concatenation operation in Section 2.3.5. 

1.3 Tiered Storage: Motivation and Goals 
As the pace at which data is gathered continues to accelerate, thanks 
to applications such as IoT, it is important to be able to store data 
inexpensively. At the same time, increased interest in real-time data 
processing and interactive exploration are driving adoption of faster 
tiers of storage such as flash and RAM. Current cloud approaches, 
such as storing data durably in tiers (e.g., blob storage) optimized 
for inexpensive storage, and requiring users to bring it into more 
performant tiers (e.g., local HDDs, SSDs or RAM) for 
computation, suffer from three weaknesses for Big Data analytics: 

1. The overhead of moving all data to the compute tier on 
demand affects performance of analytic jobs. 

2. Jobs must be able to quickly determine where data is 
located to collocate computation. This requires running a 
file manager that efficiently provides fine-grained 
location information in the compute tier. 

3. Users must explicitly manage data placement, and 
consider security, access control, and compliance as data 
travels across distinct services or software boundaries.  

We simplify all this by enabling data location across storage tiers 
to be managed by the system, based on high-level policies that a 
user can specify (or use system defaults), with security and 
compliance managed automatically within a single integrated 
service, i.e., ADLS. The location of data is thus transparent to all 
parts of the user experience except for cost and performance, which 
users can balance via high-level policies. 

 

Figure 1-1: ADLS Overview 
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The architectural context for ADLS is illustrated in Figure 1-1. 
ADLS and ADLA are designed for workloads such as Apache 
Hadoop Hive, Spark, and Microsoft’s Scope and U-SQL, that 
optimize for data locality. The YARN-based ADLA framework 
enables such distributed queries to run in a locality-aware manner 
on files stored in ADLS, similar to how Scope queries run on 
Cosmos or Hive queries run on Hadoop clusters with HDFS. The 
query (specifically, the query’s application master or AM) calls 
ADLS to identify the location of its data and produces a plan that 
seeks to run tasks close to the data they process, and then calls 
YARN to get nearby compute resources for each task (i.e., on the 
same machines where the task’s data is in local storage, if possible, 
or on the same racks). Local storage is durable; users can choose to 
always keep data there or to use (cheaper) remote storage tiers, 
based on their anticipated usage patterns. If relevant data is only 
available on remote storage, ADLS automatically fetches it on-
demand into the machine where the task is scheduled for execution. 
Queries can also execute anywhere on Azure VMs (e.g., in IaaS 
Hadoop services or Microsoft’s managed Hadoop service, 
HDInsight) and access data in ADLS through a gateway.  
The rest of the paper is organized as follows. In Section 2, we 
present the overall architecture of ADLS. We introduce the 
different components, and discuss the flow of the main operations 
supported by ADLS. Then in Section 3 we discuss the technology 
behind RSL-HK rings, a foundation for many of the metadata 
services, before diving into the implementation of each of the 
services in Section 4. We examine tiered storage in more depth with 
a discussion of storage providers in Section 5. In Section 6, we 
focus on security in ADLS, including encryption and hierarchical 
access controls. Since composing several complex microservices in 
quite complex ways is so central to the architecture of ADLS, its 
development involved a laser-like focus on ensuring that each of 
the microservices achieves high availability, strong security, low 
latency, and high throughput. For this reason, we present 
performance data for the individual microservices throughout this 
paper. However, a through treatment of end-to-end performance is 
beyond its scope. 

2. OVERVIEW OF ADLS 
In this section, we introduce the basic concepts underlying file 
storage in ADLS, the system components that represent files, 
folders and permissions, and how information flows between them.  

2.1 Anatomy of an ADLS File 
An ADLS file is referred to by a URL, and is comprised of a 
sequence of extents (units of locality in support of query 
parallelism, with unique IDs), where an extent is a sequence of 
blocks (units of append atomicity and parallelism) up to 4MB in 
size. At any given time, the last extent of a file is either sealed or 
unsealed, but all others are sealed and will remain sealed; this last 
extent is the tail of the file. Only an unsealed extent may be 
appended to, and it is available to be read immediately after any 
write completes. A file is also either sealed or unsealed; sealed files 
are immutable i.e., new extents cannot be appended, and the file 
size is fixed. When a file is sealed, its length and other properties 
are made permanent and cannot change. While a file’s URL is used 
to refer to it outside the system, a file has a unique ID that is used 
by almost all components of ADLS. 
The concept of tiered storage is core to the design of ADLS—any 
part of a file can be in one (or more) of several storage tiers, as 
dictated by policy or performance goals. In general, the design 
supports local tiers, whose data is distributed across ADLS nodes 
for easy access during job computation, and remote tiers, whose 

data is stored outside the ADLS cluster. The set of storage tiers 
currently supported includes Azure Storage [5] as well as local 
storage in the compute cluster (including local SSD and HDD tiers), 
and has a modular design that abstracts tiers behind a storage 
provider interface. This interface exposes a small set of operations 
on ADLS file metadata and data, but not namespace changes, and 
is invariant across all the types of storage tiers. This abstraction 
allows us to add new tiers through different provider 
implementations such as Cosmos, HDFS, etc.  
Local storage tiers are on the same nodes where ADLA can 
schedule computation, in contrast to remote tiers, and must provide 
enough information about extent storage to allow ADLA to 
optimize computations by placing computation tasks close to the 
data they either read or write, or both. Remote tiers do not have this 
responsibility, but they still need to support parallelism, as an 
ADLA computation tends to read (and often write) many extents 
simultaneously, and a job executing on thousands of back-end 
nodes can create a barrage of I/O requests, imposing significant 
requirements on remote storage tiers. 
ADLS supports a concept called a partial file, which is essentially 
a sub-sequence of the file, to enable parts of a file to reside in 
different storage tiers, each implemented by a storage provider (see 
Section 5). This is an important internal concept, not exposed to 
users. A partial file is a contiguous sequence of extents, with a 
unique ID, and a file is represented internally in ADLS as an 
unordered collection of partial files, possibly overlapping, each 
mapped to a specific storage tier at any given time. Thus, depending 
on how partial files are mapped to different storage tiers, a storage 
tier may contain non-contiguous sub-sequences of a given file's 
extents. The set of partial files must between them contain all 
extents of a file, but some extents may be represented in more than 
one partial file. For each file, at most one partial file contains an 
unsealed extent, and that is the tail partial extent for the file.  
Partial files can also be sealed. If for some reason the tail partial file 
needs to be sealed, a new partial file is created to support 
subsequent appends. Even after a file is sealed, the location of any 
of its partial files can still change, and further, the set of underlying 
partial files can be modified (split, merged) so long as this set 
continues to accurately reflect the sequence of extents of the file. In 
Figure 2-1, we show how two example files are represented as 
partial files through the various ADLS microservices and storage 
tiers. We will use this as an example to illustrate the ADLS 
architecture in the next few sections.  

2.2 Components of the ADLS System 
We first outline the various components of ADLS, illustrated in 
Figure 2-2, and return to each of the components in detail in 
subsequent sections. An ADLS cluster consists of three types of 
nodes: back-end nodes, front-end nodes and microservice nodes. 
The largest number of servers, the back-end nodes, is reserved for 
local tier data storage and execution of ADLA jobs. The front-end 
nodes function as a gateway, hosting services needed for 
controlling access and routing requests, and microservice nodes 
host the various microservices.  
Central to the ADLS design is the Secure Store Service (SSS, see 
Section 4.1), which orchestrates microservices and a heterogenous 
set of supported storage providers. The SSS acts as the point of 
entry into ADLS and provides a security boundary between it and 
applications. It implements the API end points by orchestrating 
between metadata services and storage providers, applying light-
weight transaction coordination between them when needed, 
handling failures and timeouts in components by retries and/or 
aborting client requests as appropriate, and maintaining a consistent 
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internal state throughout and ensuring that a consistent state is 
always presented to clients. It provides a semantic translation 
between files exposed by the ADLS system and the underlying 
storage providers. It also hosts adapter code for implementing the 
storage provider interface for each supported storage provider.  
The RSL-HK Ring infrastructure (see Section 3) is the foundation 
for how ADLS supports very large files and folders, providing 
efficient, scalable and highly available in-memory, persistent state; 
most of the metadata services described below are based on it. It 
implements a novel combination of Paxos and a new transactional 
in-memory block data management design. The scalability and 
availability of RSL-HK is based on its ability to dynamically add 
new Paxos rings, and to add machines to an existing Paxos ring. 
The Paxos component of RSL-HK is based on the implementation 
in Cosmos, which has provided very high availability across 
hundreds of rings in production use over many years. The 
transactional in-memory block management leverages technology 
used in SQL Hekaton [9]. The metadata services run as RSL-HK 
rings, with each ring typically having seven dedicated servers. 
A hyper-scale distributed Naming Service (NS) (see Section 4.4), 
layered over RSL-HK rings, associates file names with IDs and 
provides a hierarchical namespace for files and folders across data 
centers, supporting renames and moves of files and folders without 
copying data [18]. In contrast, traditional blob storage systems lack 
the ability to rename or move a container, and require a recursive 
copy of contents to a newly created container. NS also enables the 
implementation of ACLs on both files and folders and, through its 
integration with Azure Active Directory and the ADLS Secret 
Management Service (SMS) component (see Section 4.2), provides 
enterprise grade secure access control and sharing. ADLS supports 
POSIX style ACLs [23], and can support other convenience 
features such as recursive ACLs. All ADLS namespace entries and 
operations on them are managed by NS, regardless of the tiers 
involved in storing the given file or folder (Section 4.4).  
The Partial File Management Service (PFM) (see Section 4.3) 
maintains the list of partial files that comprise a file, along with the 
provider (i.e., storage tier) for each partial file. The implementation 
of each partial file, including its metadata, is the responsibility of 
the storage provider to which that partial file is mapped. 
Accordingly, data and file metadata operations against an ADLS 
file are partly handled by delegation to the corresponding storage 
providers. For example, when a file is written to, the SSS uses the 
file’s ID and the PFM to locate the tail partial file that contains the 
extent, and appends to it. 
Depending on usage patterns, policies and the age of data, partial 
files need to be created on a specific tier, moved between store tiers 
or deleted altogether. When a file is created, a single partial file is 
immediately created to represent it. Any append to the file is always 
to a single partial file on a single tier.  
We move partial files between tiers through decoupled copying and 
deleting. To change the tier of a partial file, a new partial file is 
created in the target tier, by copying data from the source partial 
file. For a time, two separate partial files (in two different tiers) are 
represented in the PFM, containing identical data. Only then is the 
source partial file deleted. When a partial file is no longer needed, 
it is deleted, while ensuring that all extents in it also exist in some 
other partial file, unless the file itself is being deleted.  
The Extent Management Service (EMS) tracks the location of every 
extent of every file in a remote storage provider (see Section 5.3), 
similar to the HDFS NameNode. Scalability of the NameNode has 
long been a challenge in HDFS, and in contrast the EMS, using the 
RSL-HK ring infrastructure, achieves very high scalability, 

performance, and availability. Notably, ADLS differs from HDFS 
in separating naming (and other file metadata), stored in the NS, 
from extent metadata, stored in the EMS. This is to handle the 
disparate scale characteristics and access patterns for these two 
kinds of metadata. 
The Transient Data Store Service (TDSS) (see Section 4.6) 
temporarily stores output from ADLA computation tasks that is yet 
to be used as input to other such tasks, and makes many 
optimizations to achieve significant performance improvements. 
ADLS is designed to support low-latency append scenarios. 
Typically, low-latency scenarios involve appends that are small (a 
few bytes to a few hundred KB). These scenarios are sensitive to 
the number of operations and latency. The Small Append Service 
(SAS) (see Section 4.5) is designed to support such scenarios 
without requiring an ADLS client to use different APIs for different 
append sizes. It enables a single ADLS file to be used for both low-
latency, small appends as well as traditional batch system appends 
of larger sizes that are sensitive to bandwidth. This is made possible 
by detecting the write sizes in real-time, storing the appends in a 
temporary (but durable) buffer, and later coalescing them to larger 
chunks. The small appends are acknowledged immediately and 
thus the client can immediately read the tail of the file.  

2.3 Flow of Major Operations 
This section outlines how ADLS microservices interact with 
storage providers to implement the core operations, including 
examples drawn from Figure 2-1.  

2.3.1 Opening a File 
To create a new file, the SSS creates an entry in the NS, and 
associates a new file ID with the name. The SSS then chooses the 
storage provider for the tail partial file, and associates the provider 
and a newly generated partial file ID (as tail partial file) with the 
file ID in the PFM for use by subsequent operations. Finally, the 
SSS requests the chosen provider to create a file indexed by the 
chosen partial file ID. To open an existing file, the flow is similar, 
but the file ID is looked up in the NS, the provider ID and tail partial 
file ID are looked up in the PFM. In both cases, access controls are 
enforced in the NS when the name is resolved.  
Using the example from Figure 2-1, consider opening 
/myfolder/ABC. The entry for “myfolder” is found in the NS, child 
links are followed to the entry for “ABC”, and file ID 120 is 
obtained. This is looked up in the PFM, to get the provider ID Azure 
Storage and partial file ID 4. These are associated with the returned 
file handle and stored in the SSS for later use. 

2.3.2 Appending to a File 
ADLS supports two different append semantics: fixed-offset 
append, and free offset append. In the case of fixed-offset append, 
the caller specifies the starting offset for the data and if that offset 
already has data, the append is rejected. In the case of free offset 
append, ADLS determines the starting offset for the data and hence 
the append operation is guaranteed not to fail due to collisions at 
the offset. One crucial append scenario is upload of large files, 
typically performed in parallel. When the order of data within the 
file is not critical and duplicates (due to timeout or job failure) can 
be tolerated, multiple threads or clients can use concurrent, free-
offset appends to a single file. (A similar approach to parallel 
appends was used in Sailfish [29], with the added generality of 
writing in parallel to extents other than the tail.) Otherwise, all 
clients can use fixed-offset uploads to their own intermediate files 
and then use the fast, atomic concatenation operation described in 
Section 2.3.5 to concatenate them in order into a single file.  
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Figure 2-1: Anatomy of a File 

Figure 2-2: ADLS Architecture 

55



To append to an open file, SSS looks up the tail partial file from the 
PFM. Note that the tail partial file is guaranteed to be unique for 
any particular file. If there is no tail partial file in PFM, this means 
the file is either empty or was sealed for some reason. 
In that case, SSS registers a new partial file in PFM, and creates it 
in the appropriate storage provider, and opens a handle to this new 
tail partial file. Once SSS has a valid tail partial file handle, all 
subsequent appends go directly to the storage provider. Neither the 
NS nor the PFM is involved. SSS only needs to interact with PFM 
again when the current tail partial file is sealed.  
In Figure 2-1, consider appending to /myfolder/XYZ. The file ID 
in the NS is 123, and according to the PFM the tail partial file is 3, 
mapped to the Cosmos provider. The consequence of not involving 
PFM in every append is that PFM does not have the up-to-date 
information for the tail partial file. Before the tail partial file has 
been sealed, requests for the length are delegated to the provider. 
When a partial file (and hence also its tail extent) is sealed, the 
length is updated in the PFM. If an append operation on a tail partial 
file exceeds the storage provider’s file length limit, the operation 
fails (locally), causing the SSS to initiate sealing the partial file, and 
retry the append. Notably, sealing a partial file is idempotent (a 
requirement on the provider implementation), and hence if 
concurrent appends experience this local failure, they are all 
allowed to succeed, even though only the one that won the race to 
seal actually made a change.  

2.3.3 Read 
There are two methods to read data from ADLS. The first method 
is by specifying a byte range to read. Data in the byte range can be 
available in multiple storage providers, e.g. in both Cosmos 
provider and Azure Storage provider. SSS attaches a numerical 
value to each storage provider to indicate its performance relative 
to the other stores. If the data is available in multiple storage 
providers, SSS selects the “fastest” storage provider to read from. 
Once SSS determines which partial file to read from, it sends the 
read request to the partial file without PFM being involved.  
In Figure 2-1, consider reading bytes 0 to 9 from the file 
/myfolder/XYZ, and notice that partial files 1 and 2 both start at the 
beginning of the file. Assume both are long enough to contain these 
10 bytes. The SSS has a choice of which storage provider to read 
from, based on policies. If it chooses file 1, the provider looks up 
this partial file in the EMS to find that extent 1 is in blob-m of 
storage account Account03. The internal APIs of Azure Storage are 
then used to read the required bytes from that blob.  
The second method is by accessing extents and their replicas 
directly from the local storage providers when compute and data 
are collocated. First, the GetFileInformation entry point (described 
below) is used to obtain the location of all extents of a file, 
including their replicas, across all storage providers. Then the job 
chooses the extents it needs and the instances it prefers because of 
cost, performance or availability. Computation tasks are collocated 
with the extents that are read, and they access them via the store 
provider interface through the SSS. 

2.3.4 Obtaining File Metadata 
The GetFileInformation operation returns file meta data and a 
sequence of extent meta data, primarily for use by ADLA in 
choosing back-end nodes for placing a job’s computation tasks. File 
and extent meta data are split between PFM and storage providers. 
This is implemented by looking up the file in the PFM, and then 
traversing all the partial file references, following them to the 
storage providers to obtain extent metadata including replicas, and 
then combining it all in the result. The extent metadata returned is 

organized in terms of the user-visible extents: there is one object 
returned for each of these extents, which contains the metadata 
about extent instances in the storage providers, including their 
replicas. (Replica details are only of interest for local tiers—for  
remote tiers they are merely a detail of provider implementation.) 
The metadata returned includes immutable information such as 
extent ID, length, last modified time and CRC. 
In Figure 2-1, consider the file /myfolder/XYZ. For a call to 
GetFileInformation(), the SSS first contacts the PFM to obtain the 
partial files: 1, 2 and 3. Since the first two are mapped to the Azure 
Storage provider, the SSS contacts the EMS to obtain metadata for 
extents 1 to 101, stored there and it contacts the Cosmos provider 
to obtain metadata for extents 101 to 150. The SSS then merges this 
information, returns the metadata for all 151 instances of the 150 
logical extents, representing the fact that extent 101 has two 
instances, one in each of the providers. Thus, a total of 150 
metadata records will be returned, one for each extent. The record 
for extent 101 will be more complex because it contains both 
information about all replicas of the extent in the Cosmos tier, and 
also the account and blob mapping for the Azure Storage tier.   
Because extent metadata is exposed outside of ADLS, it must 
remain the same regardless of the storage provider where the extent 
resides at a given point in time, and in practice this means that a 
particular extent must always have the same ID, even if it resides 
in more than one provider. 

2.3.5 Concatenation 
This concatenates a set of source files to produce a single target file. 
After the concatenation, the source files are effectively deleted. All 
source files and partial files in each source file must have been 
sealed before concatenation, and this operation will seal them if 
necessary. This property allows the size of all partial files to be 
known, and makes it safe to combine, and if necessary re-sequence, 
the partial file metadata into a single file.  
This is implemented purely as a metadata operation in the NS and 
PFM, except that sealing a partial file, if necessary, requires the 
involvement of the storage provider.  
Returning to the example of Figure 2-1, consider concatenating 
/myfolder/ABC and /myfolder/XYZ to produce 
/myfolder/NEWFILE. Only the contents of the NS and the PFM 
will change. First, a new file ID is assigned—say 130. Then, the 
PFM is consulted to determine the set of partial file IDs that will 
comprise the new file—1, 2, 3, 4. All four corresponding entries in 
the PFM atomically have their file ID updated to 130 (from 
variously 120 and 123.) Finally, the file entries ABC and XYZ in 
NS are atomically replaced with the entry NEWFILE, and the entry 
for myfolder is updated to have only NEWFILE as a child.  

2.3.6 Enumeration 
File enumeration (within a given folder) is mostly a metadata 
operation in the NS except that it also returns the file length and the 
last modified time. PFM contains the up-to-date length of all sealed 
partial files. If the tail partial file is unsealed, SSS queries the 
owning storage provider for the tail partial file. File enumeration 
requires the appropriate permissions to access the entire path and 
the entries to be returned, and these are enforced by the NS.  

3. RSL-HK RINGS 
ADLS metadata services need to be scalable, highly available, have 
low-latency and high throughput, and be strongly consistent. The 
set of metadata services in Cosmos, while less extensive, have 
similar requirements, and we have long used the Replicated State 
Machine approach [2], based on a proprietary Replicated State 
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Library (RSL) that implements the complex underlying replication, 
consensus, checkpointing and recovery mechanisms. RSL 
implements Viewstamped Replication [22][31], with consensus 
based on Paxos [19][20] and improvements described in [16].  
RSL-based services are deployed in quorum-based rings, usually 
consisting of seven servers, appropriately distributed across failure 
domains. There is always a single primary node, which services all 
updates, and a new primary is elected if the primary node becomes 
unavailable. While RSL is a useful building block, any internal 
state that needs to be persistent requires custom (and complex) code 
to efficiently leverage the state management features of RSL, and 
this has been a source of many issues over the years in Cosmos. 
In developing ADLS, we sought to improve RSL by creating a 
more declarative foundation for developers to do state 
management, based on in-memory tables in the SQL Server 
Hekaton Engine. The new service, called RSL-HK Rings, maintains 
the underlying Paxos ring (including electing a new primary as 
needed, keeping secondaries up-to-date, and hydrating newly 
deployed secondaries). It makes it significantly easier to develop 
metadata services by providing the following functionality: 

• Management of the metadata service’s persistent state: State 
is maintained as replicated in-memory Hekaton tables and 
indexes, and RSL-HK executes updates using Hekaton. 

• RPC handling and dispatch to callback functions: Metadata 
operations are written as transactions with ACID semantics 
realized via optimistic, lock-free techniques in Hekaton.  

• Fault-tolerance of state changes, including checkpointing, 
logging and recovery: This includes writing the transaction 
log for the primary, and replicating it to secondaries using 
RSL; full or incremental backups of log and checkpoint files, 
which serves as the basis for cross-datacenter replication to 
additional RSL-HK rings; and recovery from local 
checkpoint files and logs when a service instance restarts. 

The service developer is responsible for defining the structure of 
the service’s state, by defining the schema of the Hekaton tables, 
and specifying desired indexes on them for performance. The 
service developer also defines the RPC callback functions for 
service operations as transactions on the Hekaton tables. This 
includes ensuring that the semantics of each operation is 
appropriately handled (e.g., updates are only allowed on the 
primary, and reads are appropriate on secondaries only if the 
metadata service can tolerate slightly stale data, given the 
asynchronous replication of RSL-HK). Further, the developer must 
exercise some care to obtain the best performance, e.g., making 
operations non-blocking, and avoiding excessive contention for 
individual table rows. 
In summary, RSL-HK leverages Hekaton to give service 
developers a more declarative way to manage state, and 
transparently provides replication and recovery in an application-
agnostic way, thereby freeing service developers to concentrate 
solely on the service’s external interface and its logic.  
Figure 3-1 shows the architecture of a RSL-HK based service in a 
reduced three-node configuration, indicating the flow of transaction 
log replication from the primary node to the secondary nodes, and 
the fact that each secondary produces its own checkpoints based on 
the replicated transaction flow. 
The NS performance chart shown in Section 4.4.3 is a good 
indication of RSL-HK’s performance. While NS implements non-
trivial service logic over RSL-HK, its performance is dominated by 
that of RSL-HK. The results show that (a) RSL-HK achieves high 

throughput, and (b) latencies are less than 1ms for read transactions 
and less than 10ms for write transactions, and they do not increase 
with throughput until CPU saturation. 

 
Figure 3-1: Architecture of an RSL-HK based service 

4. ADLS COMPONENTS 
Next, we will describe the architecture and behavior of the 
individual services that comprise ADLS.  

4.1 Secure Store Service (SSS) 
The SSS provides the API entry points into ADLS, creates the 
security boundary for ADLS, and orchestrates between the 
microservices and storage providers. 
The SSS communicates with the NS for names of user-visible 
objects such as ADLS accounts, folders, files and the access control 
lists for these objects. It implements authorization in conjunction 
with the NS.  
The SSS supports file operations on persistent data and transient 
data. Data is compressed and encrypted during append operations 
and decrypted and decompressed during read operations, using the 
Secret Management Service. As part of its orchestration and 
transaction coordination roles, the SSS handles failures and 
timeouts in components by retries and/or aborting client requests as 
appropriate, maintaining a consistent internal state. 
The adapter component of each storage provider is hosted in the 
SSS, which uses the storage provider ID associated with each 
partial file to route operations to the appropriate provider via the 
adapter. 
SSS provides a secure endpoint with limited functionality to 
untrusted code running in a sandbox, such as an ADLA query, and 
trusted endpoints for services internal to Azure Data Lake (ADL), 
providing additional functionality. Each request comes with a 
security token that has enough information to identify the caller and 
do authorization checks as needed to complete the request. 
Operations at the SSS are metered and used for billing, diagnosis, 
service health monitoring etc. Logs are generated for auditing 
purposes and exposed to end users. SSS enforces bandwidth and 
throughput limits at ADLS account granularity and at each ADLS 
node. A garbage collection service cleans up deleted files and 
folders and expired files. 

4.2 Secret Management Service (SMS) 
In ADLS, a large number of secrets need to be handled with high 
throughput and low-latency. This includes internal secrets needed 
for the functioning of the other microservices described here as well 
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as customer managed secrets (such as keys to access Azure Storage 
for the accounts they will associate with their ADLS accounts). 
The Secret Management Service (SMS) has two related roles: (a) a 
secret repository, in which secrets can be stored indexed by a tuple 
<scope, name>, and (b), a broker for interaction with external secret 
repositories, such as Azure Key Vault (AKV), to enable the storage 
of secrets for which access is dependent on the SMS’ access to a 
master key present in the external secret repository. 
In the first model, the client (internal service or the external user) 
needs to have the tuple values to use them as a primary key, and the 
identity of the client needs to satisfy the authorization policies 
associated with the tuples.  
The second model extends the first model by allowing the secret 
identified by the tuple <scope, name> to be encrypted using a key 
identified by a tuple <KeyName, VaultName>. To access the 
secret, the client needs to have the tuple values, and the identity of 
the client needs to satisfy both the authorization policies associated 
with the tuples in the SMS as well as in the AKV identified by the 
second tuple (<KeyName, VaultName>). In both cases, only the 
security principals satisfying these requirements can access the 
secrets—for example, administrators by default do not have the 
rights to access secrets. 
In addition to secret management, SMS also handles compression, 
decompression, encryption, and decryption. The Trusted Software 
Module (TSM) component in SMS handles these data 
transformations. TSM is a library that is often hosted in a free-
standing process or microservice. Such processes sit behind a 
dedicated proxy process that handles both communication with its 
paired TSM instance and the proxy processes paired with other 
TSM instances. 
The security functionality of ADLS is available on every back-end, 
front-end and microservice node.  
The SMS includes a Secret Store back-end, which stores the two 
kinds of secret tuples described above, in its own RSL-HK rings. 
Its front-end orchestrates requests from various TSM instances (for 
store operations) and the ADLS gateway (for user administration 
of accounts and secrets) and depends on the other SMS 
microservices. There is a local TSM instance for key management 
and its proxy. Finally, there is a cache of secret tuples from the 
Secret Store back-end.  
Figure 4-1 shows the components in SMS. 

 
 

Figure 4-1: Architecture of Secret Management Service 

This architecture has three main advantages: (a) it can incorporate 
external secret repositories for interoperability with other 
applications while limiting the amount of traffic sent to any such 
store, to avoid burdening them with the key retrieval scalability 
needs of ADLS, (b) for the very large files that ADLS supports, it 
provides scalable encryption and decryption at a block level, by 
allowing it to take place on the back-end nodes where computation 
takes place, and (c) the encryption and decryption code can be 
separated out into a secure process, to gain additional protection. 

4.3 Partial File Manager (PFM) 
The Partial File Manager (PFM) maps each file ID to the set of one 
or more partial files (and the IDs of their providers) that represent 
the file. It is the source of truth for all files in ADLS irrespective of 
which provider(s) are used to store them. However, the PFM does 
not understand or represent the internal structure of the partial files, 
including the extents. This functionality is delegated to the specific 
storage provider.  
The PFM is the source of truth for following metadata: 

1. File to partial file mapping 
2. Start and end offset of each partial file, except the tail 
3. The storage tier in which the partial file resides 
4. Partial file creation and modification date/time  
5. File length 
6. File and partial file seal state  

The current length of an unsealed partial file may not be known to 
PFM. It is only when a file is sealed, allowing all partial files to be 
sealed, including the one representing the tail, that the PFM can 
provide the up to date length of the file. To provide interim length 
as a file is being appended to, it is necessary to periodically ensure 
that all the other (non-tail) partial files are sealed, and thus able to 
provide lengths.  
The PFM enforces the requirement that all extents of a file are 
represented by at least one partial file.  
The PFM is partitioned for scalability, and it adopts the convention 
that all partial files for a given file have their metadata represented 
in the same partition. Partitions can be added dynamically.  

4.4 Naming Service (NS) 
At the core of ADLS file management is a scalable, strongly 
consistent, highly-available, high-performance, hierarchical 
naming service that maps mutable hierarchical paths to fixed 
references to objects in other ADLS metadata services. It supports 
full hierarchical naming semantics, including renaming elements of 
paths, moving subtrees within the namespace, and paged 
enumeration of folders. It also supports POSIX-style access 
control, with both classic permissions (owner, group, other) and 
extended ACLs (access and default). 
The service consists of a bank of soft-state front-end proxies and a 
set of servers. The proxies route commands to servers, coordinates 
execution of multi-server commands (e.g. move), and responds to 
changes in namespace partitioning. The server layer persistently 
stores namespace state, executes commands, partitions the 
namespace among the set of servers, repartitions the namespace as 
needed, and informs proxies of changes in namespace partitioning. 

4.4.1 Naming Service Server Architecture 
The NS server executes on RSL-HK’s low-level (non-relational) 
database interface to application code. It uses tables in this database 
to store namespace data. Some information, such as ACLs, tends to 
be widely duplicated among namespace entries, so it is stored in 
normalized form, i.e., in auxiliary tables with a level of indirection 
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that allows multiple entries to refer to the same set of auxiliary 
rows, allowing deduplication. This is highly effective in practice, 
and a good illustration of the flexibility offered by relational 
abstractions in optimizing internal system designs: ACL tables are 
orders of magnitude smaller than the main entry tables. 
Not all information, however, is stored in its most straightforward 
normalized representation. RSL-HK uses Hekaton’s multi-version 
concurrency control (MVCC), whose lightning-fast performance is 
compromised by transactional conflicts that can arise when data is 
fully normalized. For example, POSIX-compliance requires 
recording the time at which a folder’s contents were last modified. 
Two concurrent changes to the folder’s contents will both try to 
modify the last-modified time and will transactionally conflict if 
this requires modifying the same row in a table. So, last-modified 
time is stored de-normalized in a table that is appended by each 
update, and a run-behind thread aggregates this information in the 
background. This table is indexed by row-insertion time, so an 
efficient lookup can determine the most up-to-date value. 
The NS provides strong consistency in its external semantics, both 
because this is what users and applications expect from a file 
system and also because strong consistency is often needed to 
maintain namespace integrity. (For instance, if two concurrent 
Move operations use snapshot isolation for their reads, the result 
can be an orphaned loop in the namespace.) Therefore, our default 
policy is that all write operations use serializable isolation and all 
read operations use snapshot isolation. However, because 
serializable isolation can lead to a high rate of transactional 
conflicts, we carefully reduce the isolation level (at the cost of some 
software complexity) when this can be done without compromising 
external semantics or namespace integrity. 
As an example, because ACLs are de-duplicated, one ACL may be 
referred to by multiple namespace entries. When an entry is deleted, 
its associated ACL rows should be removed only if no other entries 
refer to the ACL. Using reference counting for this would require a 
serializable update on every create and delete, which could cause a 
high rate of transactional conflicts for popular ACLs. So, instead, 
we have an index on the ACL ID in the entry table, and at the time 
of deletion, we check whether at least two entries refer to this ACL 
ID. This mostly works well; however, we found that under certain 
workload patterns, this check leads to a high rate of transactional 
conflicts. To minimize such conflicts, this check is performed 
optimistically using snapshot isolation and then confirmed using 
serializable isolation. It is very common for the first check to 
succeed, allowing us to avoid the serializable check. This is 
semantically safe because we remove the ACL only if we 
serializably confirm that it is not needed. However, when the 
snapshot check fails, we might fail to remove an ACL that is no 
longer referred to, which is a resource leak. A background process 
cleans these up. 

4.4.2 Partitioning and Relocation 
For scalability, the namespace is partitioned among multiple RSL-
HK rings, with each ring having “custody” over one or more 
regions of the namespace. A custody region is specified as a path 
terminating in a half-open interval of names, avoiding a hard limit 
on folder size. For example, the region /hello/world/[bar,foo) 
includes the paths /hello/world/bar, /hello/world/cat, and 
/hello/world/doggie/dig/bone, but not /hello/world/foo. This is a 
strict generalization of Sprite’s prefix tables [33]. Each server 
records its own custody ranges and those it has relocated to other 
server rings. 

 
Figure 4-2: Performance of key Naming Service Operations 

Each proxy maintains a non-authoritative cache of server custody 
ranges. Because this cache can be incomplete or stale, a proxy 
might forward a command to an inappropriate server, in which case 
the server will respond with an internal error code and any relevant 
custody information. The proxy then updates its cache and retries 
the request. 

4.4.3 Performance 
We evaluate the performance of the NS one operation at a time 
[17][27], driving that operation towards 100% CPU usage on a 
single ring. Figure 4-2 shows that high throughputs, over 140,000 
QPS, are attained for read operations like Get (name resolution) and 
Enumerate (paging through entries in a folder). The most complex 
operation, moving a folder to a point higher in the hierarchy, 
achieves well over 40,000 QPS. All are achieved with 99.9% 
latencies below 100ms. In production conditions, the average load 
on the rings are managed such that the read latencies around 1ms 
and the write latencies are around 10ms. 
The computers used for the performance tests mentioned in this 
section and others are commodity servers with 2 x 12 core Intel® 
Haswell CPUs running at 2.40 GHz, 40 Gb NIC, 4 x 2 TB HDDs 
and 4 x 500 GB SSDs. 

4.5 Small Append Service (SAS) 
ADLS provides both high throughput for batch workloads and low-
latency for small appends. ADLS supports low-latency small 
appends, a weakness of HDFS, via an ADLS microservice called the 
Small Append Service (SAS). It does so transparently to the 
application based on file write patterns—the application uses a single 
API, and requests are routed appropriately behind it. The Figure 4-3 
shows that SAS not only decreases latencies across the board, but it 
decreases the worst-case latencies by a wide margin. These results 
are based on YCSB simulations [8]. 
Low-latency, small appends are critical for transactional systems 
such as HBase [4][13] on top of ADLS. HBase Write-Ahead Logging 
append latency directly impacts HBase transaction rate. Figure 4 3 
shows the append latencies with and without SAS enabled.  
SAS tracks the history of append patterns at a per-file level. If it 
determines that a file’s append pattern is dominated by small 
appends, it automatically switches those appends to the small append 
path, which uses low-latency storage to store the payload. Appends 
on the small append path are durable once acknowledged, like all 
other appends. For a file whose append pattern is dominated by large 
appends, SAS passes each append to the downstream storage 
providers directly. This happens without user intervention.  
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Figure 4-3: SAS Performance 

 To minimize metadata overheads and improve read performance, 
appends on the small append path are coalesced asynchronously into 
larger append blocks before being moved to one of the storage tiers. 
When a file’s appends are being processed by the small append path, 
only a short section of the tail remains in low-latency storage—the 
remainder is periodically flushed to a tier. After a period of no activity 
on a file, the remainder is moved to a storage tier, and the file is 
forgotten by the SAS. If it is subsequently appended again, its 
evaluation for the small append path starts again from scratch.  

4.6 Transient Data Store Service (TDSS) 
During the execution of ADLA jobs, the amount of temporary data 
generated by operations such as shuffle (and used later in the job) can 
be large. The Transient Data Store Service (TDSS) is responsible for 
storing such intermediate job data, and runs on every back-end 
storage/computation node. The temporary data generated by a 
computation is stored on the machine where it is generated. In 
general, it is subsequently read from a different machine, but the 
execution is optimized to collocate reads to the extent possible (e.g., 
schedule the consumption to be on the same machine or rack). 
Unlike most data persisted in ADLS, such intermediate job data can 
always be regenerated by partially re-running a job, and it is only 
needed for a short period of time since it is only consumed within the 
same job. This argues for a design that optimizes for higher 
performance and lower cost at the cost of occasional re-generation: 

1. Only one copy of the data is required. If that copy is lost, 
the computation that generated it can be re-run. 

2. Data can be simply persisted to the filesystem cache. 
3. Jobs don’t interact with each other, so the security of 

transient data can be job-centric rather than user or 
account-centric.  

As a practical matter, we note that to support the U-SQL debugging 
features it is necessary to keep transient data around after the job 
completes. For jobs that succeed, the transient data is only retained 
for a few extra hours. For jobs that fail, the transient data is retained 
for several days. From our Cosmos experience, we have found such 
support for debugging to be a valuable feature. 
These optimizations mean that all appends are to the filesystem 
cache, but reads (many from remote machines) don’t always come 
from the disk cache. The net effect is that appends are significantly 
faster than reads, the reverse of a typical store. 
Figure 4-4 shows the performance for reading and writing of 4MB 
blocks on local HDD and SSD on a single machine, for the optimal 
throughput/latency tradeoff. Four drives of each type were striped for 
this test and the TDSS client was configured to use 10 threads each  

Figure 4-4: TDSS Performance 
doing synchronous requests. It shows the importance of caching by 
comparing results with and without the cached reads. 
TDSS maintains an expiration time for each job’s temporary data to 
help facilitate debugging. As with persistent data, all temporary data 
is encrypted at rest, and all communication is across secure channels. 

4.7 Throttling Service (TS) 
Each account has an individual quota for bandwidth and number of 
operations (both read and write) associated with it. The TS is 
responsible for collating information from all instances of SSS and 
identifying which accounts have exceeded their quota. Every 50 ms, 
each SSS sends to the TS the latest per-account request counts and 
byte counts observed during that period. The TS is shared for 
scalability and aggregates the data from all SSS instances, and 
identifies a list of those accounts that should be throttled and returns 
this list to the SSS. The SSS uses this list to block requests for the 
indicated accounts for the next 50ms period. The global knowledge 
provided by the TS allows the entire cluster to react to changing per 
account activity with a lag of no more than 50ms. The TS and SSS 
together prevent accounts from impacting each other, thereby 
alleviating the noisy neighbor problem. 

5. STORAGE PROVIDERS 
A storage provider is essentially a flat-namespace, append-only 
object store, where each object is a partial file. Storage providers are 
not required to implement any hierarchical namespace or map any 
part of ADLS namespace.  
Storage providers don’t communicate directly with each other or with 
the microservices. As mentioned previously, the SSS coordinates 
between microservices and storage providers. This design pattern 
leverages existing and future ADLS features to accrue to the storage 
providers. Authentication, authorization, encryption, hierarchical 
namespace management, etc. are examples of such features.  
Furthermore, the addition of storage providers cannot weaken 
ADLS’ data durability and availability. That does not mean data in 
individual storage providers must be highly durable and available. It 
means the combination of all copies in all storage providers needs to 
be durable and available. Each storage provider may have different 
levels (or probability) of data durability and availability. For 
example, typically three copies of an extent are maintained in the 
Cosmos Storage Provider to provide durability. 
A storage provider may be built specifically to implement an ADLS 
tier, or it may have been designed and implemented independently 
[5][32]. Either way, its implementation consists of some distributed 
storage system, together with a storage adapter that implements the 
simple, low-level storage provider interface. The storage adapter 
runs as part of the SSS. It contains all logic needed to translate 
between the storage provider interface and the underlying storage 
system. (This can vary considerably in complexity, depending on the 
size of the semantic gap.) It is also responsible for reliable, efficient 
communication with the underlying storage system. 
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5.1 Local Storage Providers 
Local storage providers store their extents distributed across the 
ADLS nodes so that they can be accessed quickly by computation 
tasks executing on these nodes. Of course, the distribution of extents 
must also meet the needs of scalable and durable distributed storage, 
with replicas distributed across failure domains. There can be more 
than one local provider, typically utilizing different classes of storage 
hardware on the computation nodes.  
The Cosmos Storage Provider is a local storage provider based on 
Cosmos which is designed to support high performance, massive 
scale analytics by storing data on computation nodes. Its 
implementation is beyond the scope of this paper, but at a high level 
it consists of a single, partitioned RSL-based service that fills both 
the roles of naming and extent management, and an extent storage 
service that resides on every computation node and is responsible for 
the extents that are stored on that node. Ideally, computation tasks 
rely mostly on extents stored on the node on which they execute, but 
the extent storage service also supports remote read and append 
requests.  

5.2 Remote Storage Providers 
The Azure Storage Provider is remote in the sense that the data is 
stored in one or more separate Azure Storage clusters. The specific 
location of ADLS extents in Azure Storage is of no interest to ADLS, 
but high bandwidth, low-latency access to them is of great interest. 
Because of bandwidth constraints imposed on Azure Storage 
accounts, an ADLS cluster uses multiple accounts, and each ADLS 
partial file is separately striped across these accounts, with each 
ADLS extent represented by a single Azure Storage blob. Extent IDs 
are hashed to determine the Azure Storage account in which they are 
stored. This means that each Azure Storage account contains extents 
from many different ADLS partial files, from many ADLS files, 
belonging to many ADLS accounts. This is illustrated in Figure 2-1. 

5.3 Extent Management Service (EMS) 
To incorporate a remote storage provider into ADLS, in many cases 
it is necessary to introduce extent management—a way to map from 
a partial file to the extents that comprise it, and how those extents are 
represented in the underlying storage provider. For this, we have 
developed a generic EMS. Specifically, the EMS is used to provide 
extent management for data stored in the Azure Storage provider. 
Given a partial file and offset, the EMS resolves them to an offset 
within an extent. It is the source of truth for the following extent 
metadata:  

1. Logical size of the extent (while physical size is managed 
by Azure Storage) 

2. Index of an extent for a given partial file 
3. Offset range that an extent covers for a given partial file  
4. Location of the extent in the storage tier 

Consequently, the EMS is critical for executing read and append 
operations, translating logical offsets in partial files to physical extent 
locations in the data node.  
The EMS also enforces the pre-defined extent size limit, by sealing 
the current extent and starting a new one when necessary. It also 
ensures that a block does not cross an extent boundary. Furthermore, 
it deals with rejecting fixed offset appends when the specified offset 
does not match the end of the file.  
The EMS is built on top of the RSL-HK infrastructure, but the scale 
of ADLS requires several rings to represent all extents. To achieve 
this the EMS supports extent range partitioning. It groups sequences 
of consecutive extents of a partial file into an extent range, which is 

the unit of partitioning for this service, and is not exposed outside this 
service. The number of extents in an extent range is limited by the 
available memory in a partition. Every partial file has a root EMS 
partition which stores the sequence of partition IDs and extent ranges. 
To support dynamic rebalancing of partitions (to deal with request 
hotspots), an extent range can be moved from one partition to another 
without downtime. When a partial file is deleted, the EMS retains its 
extent metadata for a configured time to support recovery. A garbage 
collector within the EMS handles the eventual deletes, together with 
compaction to reduce memory usage.  

 
Figure 5-1: Performance of key EMS operations 

We have evaluated the performance of EMS by stressing five rings 
to 90% CPU utilization for thousands of hours from over 100 
clients. Each ring experienced 150,000 QPS as reads and 50,000 
QPS as writes. The median, 99% and 99.9% latencies are shown in 
Figure 5-1. In production conditions, the average load on the rings 
are managed to keep the read latencies under 1ms and the write 
latencies under 10ms. 

6. SECURITY 
ADLS is architected for security, encryption, and regulatory 
compliance to be enforced at scale. Key security requirements such 
as user authentication, including multi-factor, and Role-Based 
Access Control (RBAC) are performed through integration with 
Azure Active Directory (AAD) as the identity provider. ACLs are 
enforced using POSIX-compliant permissions [12][24] on files and 
directories using the NS. As the ADLS APIs are HDFS-compliant, 
they allow ACL data in a manner respecting the POSIX standard 
[14]. Data flowing into and through ADLS is encrypted in transit 
and at rest. In ADLS, overall security responsibility rests with the 
SMS, described earlier. Next, we describe in detail the enforcement 
of security and encryption, in terms of the SSS and other 
components. 

6.1 Authentication and Authorization 
Every ADLS API requires a valid OAuth token from a supported 
identity provider. AAD allows ADLS to support users and service 
principals from managed tenants (customers' hosted Active 
Directory instance), federated tenants (on premise Active Directory 
instances) and Microsoft accounts. When an ADLS API call is 
made and an OAuth token is not provided, one is acquired by 
redirecting the call to AAD. Next, the token is augmented with the 
user’s security groups, and this information is passed through all 
the ADLS microservices to represent user identity. 
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Authorization for ADLS operations is a two-step process. First, 
Azure RBAC is used to check the user's broad permissions: an 
account owner has rights that override the individual storage 
entities ACLs. Second, additional checks are made against the 
ACLs stored in the NS during name resolution, etc. Each entry in 
the NS contains a set of Access Control Entries (ACEs) that 
describe the scope, qualifiers, and which of read, write, and/or 
execute permissions are applicable. The SSS orchestrates with the 
NS to execute the second step. Authorization is invariant with 
respect to the entry point for the operation (portal, application built 
in top of one of our SDKs, REST APIs, etc.) A security audit trail 
is provided at multiple granularities for all operations.  

6.2 Encryption 
ADLS provides encryption at rest for all data. Each append block 
is encrypted separately, using a unique key, ensuring that the 
amount of cypher text produced using any given key is small. The 
emphasis that ADLS places on extremely large files makes this 
especially important. The header for every block contains metadata 
to allow block-level integrity checks and algorithm identification.  
Both service-managed and user-managed keys are supported by 
integrating with AKV for enterprise-grade key management. 
Integration with AKV and isolation of encryption and decryption 
are performed by the SMS. Various encryption and decryption 
services, software and hardware, can be plugged in. 
Three types of keys are used to encrypt data: Master Encryption 
Key (MEK), Data Encryption Key (DEK), and Block Encryption 
Key (BEK). For every ADLS account, a MEK is generated (by the 
user or the service) and stored in AKV. All other keys used in the 
account are encrypted using the account’s MEK. The user can 
generate the MEK, store it securely in AKV, and provide access to 
ADLS to encrypt and decrypt data using the MEK but without 
access to the MEK itself. For service-managed keys, the account 
MEK is generated by the SMS and stored securely in AKV. The 
lifecycle of a user managed MEK is managed by the user directly 
in AKV. The use of MEK to encrypt other keys in the account 
enables the ability to “forget” all data by deleting the MEK. ADLS 
also supports periodic MEK and DEK rotations. 
An account’s DEK is generated by SMS, and forms the root key for 
all the subsequent file encryption keys. The DEK is encrypted using 
MEK and is stored in the ADLS cluster. The BEK is generated for 
each data block using the account’s DEK and the block’s ID in the 
TSM, and is used to encrypt the block. It is this key that minimizes 
the surface area as described above. Encryption, decryption, 
compression. decompression, and key derivation are performed in 
a separate security boundary [26] in the TSM. 
Encryption and decryption might be expected to introduce 
significant overheads. However, in executing a broad mix of U-
SQL queries on ADLA, producing a 60/40 read/write mix of data 
traffic, encryption and decryption only added 0.22% in total 
execution time (on a baseline of over 3000 hours). 

7. CONCLUSION 
ADLS has made significant improvements over Cosmos, notably 
in its support for open-source analytic engines from the Hadoop 
ecosystem, its security features, scale-out microservices and tiered 
storage. It is replacing Cosmos for Microsoft’s internal big data 
workloads and is an externally-available Azure service. Feedback 
from users has been very positive and has also helped us identify 
feature areas to address, such as avoiding migrations while 
supporting ever-larger datasets, and querying data that is 
geographically distributed. 
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