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Administrative details

• Issues submitting homework
• #make sure you are the right data type and values. You can use histogram to check it
• # 0-255 if uint8   
• # 0-1 if float
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Administrative details

• Issues submitting homework
• return kernel / np.sum(kernel)      #note that this normalize the filter to 1. is it desirable?

• Try it to normalize to 
• return kernel / (2*np.sum(kernel))

• return 2*kernel / np.sum(kernel)

• return kernel / np.sum(kernel)

• Check the obtained brightness of the image
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Administrative details

• Issues submitting homework
• Plot your partial results

• Some plotting functions update the range when you are using floats (astronaut image)

• if you want to be sure on what you are getting:
• Make sure your image is in the range 0 to 255 (many ways to do it: normalize by max value, 

min(255,img)

• Convert the type back to uint8 using   astype(uint8)

• Then plot
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Credits

• Some slides comes directly from:
• Yogesh S Rawat (UCF)

• Noah  Snavely (Cornell)

• Ioannis (Yannis) Gkioulekas (CMU)

• Mubarak Shah (UCF) 

• S. Seitz 

• James Tompkin

• Ulas Bagci

• L. Lazebnik
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Short Review 
from last class
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Outline

• Image segmentation basics

• Thresholding based
• Binarization

• Otsu

• Region based
• Merging

• Splitting

• Clustering based
• K-means (SLIC)
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Image segmentation

• Image segmentation partitions an image into regions called segments.

• Image segmentation creates segments of connected pixels by analyzing some 
similarity criteria:
• intensity, color, texture, histogram, features
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Image segmentation methods
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based 
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Otsu thresholding

• Definition: The method uses grey-value histogram of the given image I 
as input and aims at providing the best threshold (foreground/background)

• Otsu’s algorithm selects a threshold that maximizes the between-
class variance or      or minimize within-class variance 
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Otsu thresholding

• Definition: The method uses grey-value histogram of the given image I 
as input and aims at providing the best threshold (foreground/background)

• Otsu’s algorithm selects a threshold that maximizes the between-
class variance 
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Region Growing Implementation
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Region splitting and Merging Segmentation
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Robot Vision
8. Segmentation II
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Outline

• Image segmentation basics

• Thresholding based
• Binarization
• Otsu

• Region based
• Merging
• Splitting

• Clustering based
• K-means 
• Superpixels (SLIC)
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What is Clustering?

• Organizing data into classes such that:
• High intra-class similarity

• Low inter-class similarity

• Finding the class labels and the number of classes directly from the 
data (as opposed to classification tasks)
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What is a natural grouping ?
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What is a natural grouping ?
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Outline

• Image segmentation basics

• Thresholding based
• Binarization
• Otsu

• Region based
• Merging
• Splitting

• Clustering based
• K-means 
• Superpixels (SLIC)
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K-means

• Most well-known and popular clustering algorithm:

• Start with some initial cluster centers

• Iterate:
• Assign/cluster each example to closest center

• Recalculate centers as the mean of the points in a cluster
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K-means
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K-means
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Step 0: 
- Pick number of classes
- Pick seeds for those classes



K-means
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Iterate:
Assign/cluster each example to closest center
Recalculate centers as the mean of the points in a cluster



K-means
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K-means
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Distance measures
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K-means
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K-means
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K-means loss function

CAP4453 43

K-means tries to minimize what is called the “k-means” loss function:

that is, the sum of the squared distances from each point to the
associated cluster center

𝑙𝑜𝑠𝑠 = ෍

𝑖=1

𝑛

𝑑2(𝑥𝑖 , 𝜇𝑘), 𝑤ℎ𝑒𝑟𝑒 𝜇𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 𝑓𝑜𝑟 𝑥𝑖



K-means: initialization
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Choosing the Appropriate Number of 
Clusters
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1.The elbow method
2.The silhouette coefficient

K-Means Clustering in Python: A Practical Guide – Real Python

https://realpython.com/k-means-clustering-python/


Choosing the Appropriate Number of 
Clusters
• run several k-means, 

• increment k with each iteration

• record the sum of the squared error (SSE)
• The SSE is defined as the sum of the squared Euclidean distances of each 

point to its closest centroid
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1.The elbow method

Elbow point

https://en.wikipedia.org/wiki/Residual_sum_of_squares


Choosing the Appropriate Number of 
Clusters

• run several k-means, 

• increment k with each iteration

• Pick max silhouette coefficient
1. How close the data point is to other points in the cluster

2. How far away the data point is from points in other clusters

• (b - a) / max(a, b).      Where,

a: intra-cluster distance

b: distance between a sample and 
the nearest cluster that the sample is not a part of.

CAP4453 482. The silhouette coefficient

Maximum at 3

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html


Segmenting an image with K-means

• Example:

• Vector:  (coordinates i, coordinate j , Color L, Color a, Color b ) : 5 dims  

• Distance: Euclidean distance

• Number of clusters: 10

• Seeds selected randomly
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Kmeans function from scratch
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Calling Kmeans
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Results
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Outline

• Image segmentation basics

• Thresholding based
• Binarization
• Otsu

• Region based
• Merging
• Splitting

• Clustering based
• K-means 
• Superpixels (SLIC)
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Superpixels

• They carry more information than 
pixels.

• Superpixels have a perceptual 
meaning since pixels belonging to a 
given superpixel share similar visual 
properties.

• They provide a convenient and 
compact representation of images that 
can be very useful for computationally 
demanding problems.
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Superpixels and SLIC. What is a Superpixel? | by Darshita Jain | 
Medium

https://darshita1405.medium.com/superpixels-and-slic-6b2d8a6e4f08#:~:text=SLIC%20%28Simple%20Linear%20Iterative%20Clustering%29%20Algorithm%20for%20Superpixel,color%20space%20and%20xy%20is%20the%20pixel%20position.


SLIC (Anchanta et. al. TPAMI 2012)
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Input:
• a desired number of approximately 

equally-sized superpixels K

SLIC (Simple Linear Iterative Clustering)

Features:

Distances:

five-dimensional [labxy] space, 
• [lab] is the pixel color vector 

in CIELAB color space
• xy is the pixel position.

https://en.wikipedia.org/wiki/CIELAB_color_space


SLIC (Anchanta et. al. TPAMI 2012)
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1. Get Features: Lab color, x-y position
2. Initialize cluster centers on pixel grid in 
steps S
3. Move centers to position in 3x3  window
with smallest gradient
4. Compare each pixel to cluster center within
2S pixel distance and assign to nearest
5. Recompute cluster centers as mean 
color/position of pixels belonging to each
cluster
6. Stop when residual error is small

SLIC (Simple Linear Iterative Clustering)



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

This is done to avoid placing them at 
an edge and to reduce the chances of 
choosing a noisy pixel



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf

G(x,y) = ‖I(x+ 1,y)−I(x−1,y)‖²+‖I(x,y+ 1)−I(x,y−1)‖²
• I(x,y) is the lab vector corresponding to the 

pixel at position (x,y), 
• ‖.‖ is the L2 norm.



SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf



SLIC Example
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SLIC Example
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SLIC Example
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http://www.ele.puc-rio.br/~raul/ImageAnalysis/Superpixels.pdf
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More examples
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Questions?


