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Administrative details

• Homework 2 questions?

• Any Doubts from last classes? 
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Robot Vision
5. Edge detection I

3CAP4453



Credits

• Some slides comes directly from:
• Yogesh S Rawat (UCF)

• Noah  Snavely (Cornell)

• Ioannis (Yannis) Gkioulekas (CMU)

• Mubarak Shah (UCF) 

• S. Seitz 

• James Tompkin

• Ulas Bagci

• L. Lazebnik

• D. Hoeim
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Outline

• Image as a function

• Extracting useful information from Images
• Histogram

• Filtering (linear)

• Smoothing/Removing noise

• Convolution/Correlation

• Image Derivatives/Gradient

• Edges
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Edge Detection

• Identify sudden changes in an image
• Semantic and shape information

• Mark the border of an object

• More compact than pixels
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Origin of edges

• Edges are caused by a variety of factors
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Type of edges

• Edge models
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Why edge detection ?

• Extract useful information from images
• Recognizing objects

• Recover geometry
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Close up of edges
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Close up of edges
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Close up of edges
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Close up of edges
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Characterizing edges

CAP4453 14



Intensity profile
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1 0 -1

1D derivative filter



With a little bit of gaussian noise
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An extreme case
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Solution: smooth and derivate
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The Sobel filter
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Derivative of Gaussian (DoG) filter

derivative of 
Gaussian

output (same 
as before)

input

Derivative theorem of convolution:



Solution: smoothing

21
Smoothing remove noise, but also blur the edge



How to obtain the 
edges of an 

image?
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Several derivative filters
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• How are the other filters derived and how do they relate to the Sobel filter?
• How would you derive a derivative filter that is larger than 3x3?



Edge detectors

• Gradient operators
• Prewit

• Sobel

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)
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Gradient operators edge detector algorithm

1. Compute derivatives
• In x and y directions

• Use Sobel or Prewitt filters

2. Find gradient magnitude

3. Threshold gradient magnitude
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Sobel
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Computing image gradients
1. Select your favorite derivative filters.

1 2 1
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2. Convolve with the image to compute derivatives.

3. Form the image gradient, and compute its direction and amplitude.

gradient direction amplitude



Sobel edge detector

1. Compute derivatives
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Step 1
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Sobel edge detector

2. Find gradient magnitude
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Image I

Step 1 Step 2.
Take each pixel of the derivative of the image and square it
Add the two resulting images
Take a square root of each pixel



Step 2

30



Sobel edge detector
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Step 3

Image I

3. Threshold



Sobel Edge Detector
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Prewitt edge detector
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Image I

?

?



Prewitt edge detector

34

Image I
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Edge detectors

• Gradient operators
• Prewit

• Sobel

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)
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Where are the edges ?

• First derivative ?
• Maxima or minima

36



Where are the edges ?

• First derivative ?
• Maxima or minima

• Second derivative?
• Zero-crossing
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Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter



As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

Laplacian of 
Gaussian

output

input

“zero crossings” at edges



Laplace and LoG filtering examples

Laplacian of Gaussian filtering Laplace filtering



Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering Derivative of Gaussian filtering



Laplacian of Gaussian vs Derivative of Gaussian

Zero crossings are more accurate at localizing edges

Laplacian of Gaussian filtering Derivative of Gaussian filtering

zero-crossing peak



Marr-Hildreth edge detector algorithm

1. Smooth image by Gaussian filtering

2. Apply Laplacian to smoothed image
• Used in mechanics, electromagnetics, wave theory, quantum mechanics

3. Find Zero crossings
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Marr-Hildreth edge detector algorithm

1. Smooth image by Gaussian filtering

2. Apply Laplacian to smoothed image
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Marr-Hildreth edge detector algorithm
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This is more efficient computationally



Marr-Hildreth edge detector algorithm
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The second derivative of a gaussian



Marr-Hildreth edge detector algorithm
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The second derivative of a gaussian



Marr-Hildreth edge detector algorithm
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The second derivative of a gaussian

Given a s, Compute LoG for each x,y to obtain a Kernel



Marr-Hildreth edge detector algorithm
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The second derivative of a gaussian

Given a s, Compute LoG for each x,y to obtain a Kernel

For s = 1.4



Marr-Hildreth edge detector algorithm
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The second derivative of a gaussian

Given a s, Compute LoG for each x,y to obtain a Kernel

For s = 1.4



Marr-Hildreth edge detector algorithm

1. Smooth image by Gaussian filtering

2. Apply Laplacian to smoothed image
• Used in mechanics, electromagnetics, wave theory, quantum mechanics

3. Find Zero crossings
• Scan along each row, record an edge point at the location of zero-crossing.  

• Repeat above step along each column 
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Marr-Hildreth edge detector algorithm

3. Find Zero crossings
• Scan along each row, record an edge point at the location of zero-crossing.  

• Repeat above step along each column 
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Marr-Hildreth edge detector algorithm

3. Find Zero crossings
• Scan along each row, record an edge point at the location of zero-crossing.  

• Repeat above step along each column 
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returns -1 if x < 0, 0 if x==0, 1 if x > 0.



Marr-Hildreth edge detector algorithm

3. Find Zero crossings
• Scan along each row, record an edge point at the location of zero-crossing.  

• Repeat above step along each column 
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returns -1 if x < 0, 0 if x==0, 1 if x > 0.

Add extra row, and extra column



Marr-Hildreth edge detector algorithm

3. Find Zero crossings
• Scan along each row, record an edge point at the location of zero-crossing.  

• Repeat above step along each column 
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returns -1 if x < 0, 0 if x==0, 1 if x > 0.

Add extra row, and extra column

Zero-crossing X direction

Zero-crossing Y direction



Marr-Hildreth edge detector algorithm

3. Find Zero crossings (Another implementation)
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Example
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Example
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Edge detectors

• Gradient operators
• Prewit

• Sobel

• Marr-Hildreth (Laplacian of Gaussian)

• Canny (Gradient of Gaussian)
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Design Criteria for Edge Detection

• Good detection: find all real edges, ignoring noise or other artifacts

• Good localization
• as close as possible to the true edges

• one point only for each true edge point
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Questions ?
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