

CAP 4453 Robot Vision

Dr. Gonzalo Vaca-Castaño gonzalo.vacacastano@ucf.edu

Administrative details

- Homework 2 questions?
- Any Doubts from last classes?

Robot Vision

5. Edge detection I

Credits

- Some slides comes directly from:
 - Yogesh S Rawat (UCF)
 - Noah Snavely (Cornell)
 - Ioannis (Yannis) Gkioulekas (CMU)
 - Mubarak Shah (UCF)
 - S. Seitz
 - James Tompkin
 - Ulas Bagci
 - L. Lazebnik
 - D. Hoeim

Outline

- Image as a function
- Extracting useful information from Images
 - Histogram
 - Filtering (linear)
 - Smoothing/Removing noise
 - Convolution/Correlation
 - Image Derivatives/Gradient
 - Edges

Edge Detection

- Identify sudden changes in an image
 - Semantic and shape information
 - Mark the border of an object
 - More compact than pixels

^AP4453

Origin of edges

Edges are caused by a variety of factors

Type of edges

• Edge models

- Extract useful information from images
 - Recognizing objects
- Recover geometry

Characterizing edges

Intensity profile

1D derivative filter

1 0 -1

16

With a little bit of gaussian noise

An extreme case

Where is the edge?

Solution: smooth and derivate

To find edges, look for peaks in

$$\frac{d}{dx}(f*g)$$

The Sobel filter

1	0	-1	1 0 -1		1
2	0	-2	=	*	2
1	0	-1	1D derivative filter		1
Sob	el f	ilter		6	. 1

Smoothing

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

Solution: smoothing

Smoothing remove noise, but also blur the edge

How to obtain the edges of an image?

Several derivative filters

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Scharr

3	0	-3
10	0	-10
3	0	-3

3	10	3
O	O	0
-3	-10	-3

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	O
-1	-1	-1

Roberts

0	1
-1	0

1	0
O	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

Gradient operators edge detector algorithm

- 1. Compute derivatives
 - In x and y directions
 - Use Sobel or Prewitt filters
- 2. Find gradient magnitude
- 3. Threshold gradient magnitude

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

Prewitt

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Computing image gradients

Select your favorite derivative filters.

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}$$

Convolve with the image to compute derivatives.

$$rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

$$rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f}$$

Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Sobel edge detector

1. Compute derivatives

Step 1

Sobel edge detector

2. Find gradient magnitude

Step 2

Sobel edge detector

3. Threshold

Sobel Edge Detector

Prewitt edge detector

Prewitt edge detector

Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

Where are the edges?

- First derivative ?
 - Maxima or minima

Where are the edges?

- First derivative ?
 - Maxima or minima

- Second derivative?
 - Zero-crossing

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow$$

Laplace filter

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussia

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussia

Zero crossings are more accurate at localizing edges

- 1. Smooth image by Gaussian filtering
- 2. Apply Laplacian to smoothed image
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics
- 3. Find Zero crossings

- 1. Smooth image by Gaussian filtering
 - Gaussian smoothing

smoothed image
$$g = g$$
 smoothed image $g = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2+y^2}{2\sigma^2}}$

- 2. Apply Laplacian to smoothed image
 - Find Laplacian

$$\Delta^{2}S = \frac{\partial^{2}}{\partial x^{2}}S + \frac{\partial^{2}}{\partial y^{2}}S$$

- ∇ is used for gradient (first derivative)
- Δ^2 is used for Laplacian (Second derivative)

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I$$

This is more efficient computationally

$$\Delta^2 S = \Delta^2 (g * I) = (\Delta^2 g) * I$$

$$g = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

The second derivative of a gaussian

LoG(x,y) =
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Given a σ , Compute LoG for each x,y to obtain a Kernel

 $LoG(0,0) \approx -0.1624$

Given a σ , Compute LoG for each x,y to obtain a Kernel

Given a σ , Compute LoG for each x,y to obtain a Kernel

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\begin{array}{c} 0 & 0 & 3 & 2 & 2 & 2 & 3 & 0 & 0 \\ 0 & 2 & 3 & 5 & 5 & 5 & 3 & 2 & 0 \\ 3 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 3 \\ 2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\ 2 & 5 & 0 & -23 & -40 & -23 & 0 & 5 & 2 \\ 2 & 5 & 3 & -12 & -23 & -12 & 3 & 5 & 2 \\ 3 & 3 & 5 & 3 & 0 & 3 & 5 & 3 & 3 \\ 0 & 2 & 3 & 5 & 5 & 5 & 3 & 2 & 0 \\ 0 & 0 & 3 & 2 & 2 & 2 & 3 & 0 & 0 \end{array}$$

- 1. Smooth image by Gaussian filtering
- 2. Apply Laplacian to smoothed image
 - Used in mechanics, electromagnetics, wave theory, quantum mechanics

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

```
from skimage.filters import laplace
import numpy as np

lap = np.sign(laplace(image))
lap = np.pad(lap, ((0, 1), (0, 1)))
diff_x = lap[:-1, :-1] - lap[:-1, 1:] < 0
diff_y = lap[:-1, :-1] - lap[1:, :-1] < 0
edges = np.logical_or(diff_x, diff_y).astype(float)</pre>
```


- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

```
from skimage.filters import laplace
import numpy as np

lap = np.sign(laplace(image))
lap = np.pad(lap, ((0, 1), (0, 1)))
diff_x = lap[:-1, :-1] - lap[:-1, 1:] < 0
diff_y = lap[:-1, :-1] - lap[1:, :-1] < 0
edges = np.logical_or(diff_x, diff_y).astype(float)</pre>
```


- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

- Scan along each row, record an edge point at the location of zero-crossing.
- Repeat above step along each column

3. Find Zero crossings (Another implementation)

- Four cases of zero-crossings :
 - {+,-}
 {+,0,-}
 {-,+}
 {-,0,+}
- Slope of zero-crossing {a, -b} is |a+b|.
- To mark an edge
 - compute slope of zero-crossing
 - Apply a threshold to slope

Example

Example

 $\sigma = 3$

Edge detectors

- Gradient operators
 - Prewit
 - Sobel
- Marr-Hildreth (Laplacian of Gaussian)
- Canny (Gradient of Gaussian)

Design Criteria for Edge Detection

- Good detection: find all real edges, ignoring noise or other artifacts
- Good localization
 - as close as possible to the true edges
 - one point only for each true edge point

45 years of boundary detection

[Pre deep learning]

Questions?