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Fully connected
networks: Review



A REVIEW
Fulfly connected Neural network

A.K.A Multi-Layer Perceptron (MLP)

* A deep network is a neural network with many layers

* A neuronin a linear function followed for an activation function
e Activation function must be non-linear

* A loss function measures how close is the created function (network) from
a desired output

* The “training” is the process of find parameters (‘weights’) that reduces the
loss functions
d
* Updating the weights as Wnew = Wprev — ad—d, reduces the loss
: . d
* An algorithm named back-propagation allows to compute ﬁ for all the

weights of the network in 2 steps: 1 forward, 1 backward



Activations and their derivatives
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Digit classification

(n = 15 nearon * MNIST dataset:
28 . R e 70000 grayscale images of
N g “ digits scannele..
: = 1 * 60000 for training
2 * 10000 for testing
= e Loss function

input layer

{THd neuwrons)

1
Lw) =— " (5 =)’

train



Digit classification

Typical Problem statement:
multiclass classification

Training data

Input

(3,5) (2,2) " s sp oo
Input: vector of QOutput: Class prob
( 0 0) (2 2) pixel values
4 4

* Given, many positive and negative examples (training data),

— learn all weights such that the network does the desired job



A look in the code

* To run this code do:

* import network
* net = network.Network([784, 30, 10])
* net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
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BEnew 1 rﬂl gitignore rﬂl B Populate Defaults m :al H framepulses py rﬂl README md 1 [H networs py E1 | mnist_loader py rﬂl
18 -
15 class Network(object):
20
21 =
22
23
24
25 ]
26
27
28
Ml =22
Ml 30
31 ev ir the o
B self.num layers len({sizes)
33 self.zizes = sizes
2k self.biases = [np.random.randn(y, 1)} for y in sizes[1:]] =
35 = self.weights = [np.random.randn(y, X)
36 = for =, v in zip(sizes[:-1], =ize=s[1:]1)1]
I
38 = def feedforward(self, a):
S nMURet the output of the network if **a** is input.™™"
40 = for b, w in zip(=self.biases, self.weights):
41 - a = sigmoid({np.dot({w, a)+b)
42 = return a
£
a3 = def 5GD(self, training data, epochs, mini batch size, eta, Tl
45 - test_data=None):
486 "nnTrain the ne lr -k usi mini-b
47 . .
G
50
51
52
53 T g
54 if test_data: n_test = len(test_data)
i) n = len(training data)
=1 = for j in xrange (epochs):
57 random. shuffle(training data)
8 — mini batches = [
59 training data[k:k+mini kbatch size]
el = for k in xrange(®, n, mini katch_size)]
6l — for mini_batch in mini kbatches:
62 self.update_mini batch(mini batch, eta)
63 = if test_data:
64 = print "Epoch {0}: {1} / {2}".format(
65 1, self.evaluate(test_data), n_test)
13 = el=se:
&7 print "Epoch {0} complete".format(j)
68
I 69 = def update mini n(self, mini batch, eta):
70 nnnpdate rk's hts and biases
71 rradiant Asacant ising kacleranacatisn o= ini bateh i
Python file length: 6,438 lines: 142 Ln:70 Col:23 Sel:0|0 Windows (CRLF)  UTF-8 Ns
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$###4 Miscellaneous functions

Tdef sigmoid(z):

I T BT SR TU C

y_l
[

[}
94
A look in code as
96
97 3imilar
98 biases and self.weigl
=] nabla b = [np.zeros(b.shape) for b in self.biases]
100 nabla_w = [np.zeros(w.shape) for w in self.weights]
101 $ feedforward
102 activation = x
103 activations = [x] # list to store all the activations, layer by layer II
104 z2 = [] # list to =store all the z vectors, layer by layer
105 = for b, w in zip(self.biases, self.weights):
106 z = np.dot{w, activation)+b
107 zs.append (z)
108 activation = =sigmoid(z)
108 = activations.append (activation)
110 # backward pass
111 = delta = self.cost derivative (activations[-1], w) * A%
112 - sigmoid_prime (zs[-1])
113 nabla b[-1] = delta
114 nabla w[-1] = np.dot(delta, activations[-2].transpose())
115 # Note that the variable 1 in the loop below i= used a little
116 # differently to the notation in Chapter 2 of the book. Here, |
7 # 1 = 1 means the last layer of neurons, 1 = 2 i= the
# second-last layer, and so on. It's a renumbering of the
# =cheme in the book, used here to take advantage of the fact
— — . # that Python can use negative indices in lists.
FOTk = N.. 1 aD[TJ BDw 121 = for 1 in xrange (2, self.num lavers):
. . — ’( _(k))_ 122 z = zs[-1]
Fori = 1:layer — width PECEEAN ay_(k) e s = sigmoid prime(z)
|n|t|a||ze: Grad|ent L \ ! 124 delta = np.dot(self.weights[-1+1].transpose(), delta) * sp
125 nabla b[-1] = delta — ¥
W.r_t network Output 126 = nabla w[-1] = np.dot(delta, activations[-1-1].transpose())
127 = return (nakla_b, nabla w)
: : 120
daDiv _ aDw(z, d) B er
Byi ay!( ) < —fo - x
i3
3 L
=
=
e
=
=
=

def =zicmold prime(z):
140 |.. mwg -
141 return sigmoid(z)*(l-=sigmoid(z))

142 L

Python file length:6,439 lines:142 Ln:140 Col:5 Sel:0]0 Windows (CRLF)  UTF-8 INS
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a7 3imilar
98 biases and self.weigl
=] nabla b = [np.zeros(b.shape) for b in self.biases]
100 nabla_w = [np.zeros(w.shape) for w in self.weights]
101 $ feedforward
102 activation = x
103 activations = [x] # list to store all the activations, layer by layer II
104 z2 = [] # list to =store all the z vectors, layer by layer
105 = for b, w in zip(self.biases, self.weights):
106 z = np.dot{w, activation)+b
107 zs.append (z)
108 activation = =sigmoid(z)
108 = activations.append (activation)
110 # backward pass
111 = delta = self.cost derivative (activations[-1], w) * A%
112 / sigmoid prime(zs[-1])
113 nabla b[-1] = delta
/ nabla w[-1] = np.dot(delta, activations[-2].transpose())
1 115 # Note that the variable 1 in the loop below i= used a little
116 # differently to the notation in Chapter 2 of the book. Here, |
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— — . . # that Python can use negative indices in lists.
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134 $#### Miscellaneou=s functions 3
135 Tdef zigmoid(z) :
136 h i L
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138
1LEE def =zicmold prime(z):
140 |""": 4 2 |
I 141 return sigmoid(z)*(l-=sigmoid(z))
142 —
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A look in the code

random Initialization

[ i CA\Users\vacaca27.JMEC\OneDrive - ime
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Eclass Hetwork (ocbiject) :

Feed forward ‘a’ thru all the layers —_ ]

A Epoch is when all the training data has been used to update weights

A minibatch is a subset of all the data used to obtain a
‘quick’ weight updates

1 motn

1
o oL oW
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| ]

def

self.num layers = len(sizes)
self.zizes = sizes
self.biases = [np.random.randn(y, 1)} for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
for =, v in zip(sizes[:-1], =ize=s[1:]1)1]

feedforward(self, a) H

mMNReturn the cutput of the network if *"a® is input,"nw
turn the output of the network if a iz input.

for b, w in zip(=self.biases, self.weights):

If there is test data perform evaluation

41 - a = sigmoid({np.dot({w, a)+b)
42 = return a
£
a3 = def 5GD(self, training data, epochs, mini batch size, eta,
45 - test_data=None):
486 -
47
G
50
51
52
53 ess, but slows 1gs d N
\ 54 if test_ data n_test = len(test data)
= n = 1en{tra1n1ng_data)
=1 —\> for j in xrange (epochs):
57 E random. shuffle(training data)
8 — mini batches = [
= —p training data[k:k+mini kbatch size]
el = for k in xrange(®, n, mini katch_size)]
6l — for mini_batch in mini kbatches:
62 self.update_mini batch(mini batch, eta)
63 if test_data:
64 o print "Epoch {0}: {1} / {2}".format(
a7 = 1, self.evaluate(test_data), n_test)
66 else:
&7 print "Epoch {0} complete".format(j)
68
I 69 def update batch {self mini_batch,
70 mwwy W

Frvm A

et~k

m

Python file length: 6,438 lines: 142
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A look in the code

Add errors from all the training data from the mini-batch

Update the weights

o |
E{ *ChUsersivacaca2 7 IMEC\OneDrive - imec\deppleaming\crash course\neural-networks-and-deep-leamning-master\neural-net... @M

Edit Search VMiew Epncoding Language Settings Tools Macre BRun  Plugins  Window
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B new 1 dl & gitignore dl & Populate Defaults m dl & framepulses py dl = READMEmd £ = networcpy E3 |E mnist_loader py dl

nabla b = [np.zeros(b.shape) for b in self.biases]
nabla w = [np.zerog(w.shape) for w in self.weights=]
for ®x, ¥ in mini_batch:

» delta nakla b, delta nabla w = =elf.backprop(x, ¥)
» _ _ _ _
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SR Ve J= )
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[l o o I ]
DWW M o=] L L R
{1}
L

nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)]
nabla w = [nw+dnw for nw, dnw in zip(nabla w, delta nabla w)]

zelf.weights = [w—teta/lentrﬂini_batch}}*nw

for w, nw in zip(self.weights, nabla w)]
zelf.biases = [b—teta/lentmini_batch}}*nb

for b, nb in zip(self.biases, nabla b)]

~riwvatian . MTUn

di=))., v)

test_results = [(np.
for (=, ¥} in test_data]
return sum(int(x = y) for (x, y) in test_results)
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A REVIEW

Story so far

Neural nets can be trained via gradient descent that minimizes a
loss function

Backpropagation can be used to derive the derivatives of the loss

Backprop is not guaranteed to find a “true” solution, even if it
exists, and lies within the capacity of the network to model

— The optimum for the loss function may not be the “true” solution

For large networks, the loss function may have a large number of
unpleasant saddle points

— Which backpropagation may find




Convergence of gradient descent

converging

An iterative algorithm is said to
converge to a solution if the value
updates arrive at a fixed point

— Where the gradient is 0 and further
updates do not change the estimate

The algorithm may not actually
converge
— It may jitter around the local
minimum
— It may even diverge

Conditions for convergence?

16



Learning rate

low learning rate

high learning rate

] A l
| T |

A QzQ3 QAstop epoch

> good learning rate

17
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A closer look at the convergence
problem

With dimension-independent learning rates, the solution will converge
smoothly in some directions, but oscillate or diverge in others

Proposal:
— Keep track of oscillations
— Emphasize steps in directions that converge smoothly
— Shrink steps in directions that bounce around..

18



Momentum Update

Plain gradient update With momentum

= &>

* The momentum method maintains a running average of all gradients until
the current step

AW ®) = paw =1 — npy Err(w *-1)
W(R) — W{R_l) + ﬂW(R)
— Typical g value is 0.9

* The running average steps
— Get longer in directions where gradient stays in the same sign
— Become shorter in directions where the sign keeps flipping

19



Nestorov’s Accelerated Gradient

* Nestorov’s method
AW = pAw *=D — i, Err(W® + gaw (k1))
w®E = wk=-1 L Al &)

Momentum methods emphasize directions of steady
improvement are demonstrably superior to other methods

20



Other popular optimizers

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton
in Lecture 6e of his Coursera Class.

RMSprop and Adadelta have both been developed independently around the same
time stemming from the need to resolve Adagrad's radically diminishing learning
rates. RMSprop in fact is identical to the first update vector of Adadelta that we

derived above:

E[g%]; = 0.9E[¢%],_1 + 0.1g7
n

Bppr =0, — ——
t+1 t '75'[92]!4_5

9t

RMSprop as well divides the learning rate by an exponentially decaying average of
squared gradients. Hinton suggests - to be set to 0.9, while a good default value for
the learning rate n is 0.001.

Adam

Adaptive Moment Estimation (Adam) [4] is another method that computes adaptive

learning rates for each parameter. In addition to storing an exponentially decaying
average of past squared gradients v; like Adadelta and RMSprop, Adam also keeps an
exponentially decaying average of past gradients my, similar to momentum. Whereas
momentum can be seen as a ball running down a slope, Adam behaves like a heavy
ball with friction, which thus prefers flat minima in the error surface [*3l. We compute
the decaying averages of past and past squared gradients m; and v; respectively as

follows:

my = fime—1+ (1 — B1)ge
v = fovy 1 + (1 - .52}9:2

m; and v; are estimates of the first moment (the mean) and the second moment (the
uncentered variance) of the gradients respectively, hence the name of the method. As
m; and v, are initialized as vectors of 0's, the authors of Adam observe that they are
biased towards zero, especially during the initial time steps, and especially when the
decay rates are small (i.e. §; and 35 are close to 1).

They counteract these biases by computing bias-corrected first and second moment

estimates:
N my
my =
t
1 ,31
N U
vy =
1-4t

They then use these to update the parameters just as we have seen in Adadelta and
RMSprop, which yields the Adam update rule:

Op1 =0, —

Ui o
\/ﬁ_t—'_fﬂlt.

The authors propose default values of 0.9 for 81, 0.099 for 85, and 102 for €. They

show empirically that Adam works well in practice and compares favorably to other

21



Other omitted tricks
REGULARIZATION

Z z wili; + b
. . i z & -rLanalizaliﬂ P @ y
* Batch lizat
a C n O r m a I Za I O n Normalize minibatch to Shift fo right
zero-mean L{niT variance positfo/n

Batch Normalization | What is Batch Normalization in Deep Learning (analyticsvidhya.com)
Batch normalization - Wikipedia

¥
u; +

B L B Z
— u; Z:=
=g al|ob=5) Gi-uw)| M7 Jgse EEY
i=1 =1

e Regularization

1 1
LWy W, o, W) =) Div(Yyydp) +52 ) Wil
t k
* Batch mode:

1
AW, = Tz Vi, Div (Y, do)T + AW,
t

* Dropout: During training, for each input, at each iteration turn off”
each neuron with a probability 1-a

* Data augmentation

22
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Outline

 What is a CNN (convolutional Neural Network)

* Image Classification

 AlexNet: Network structure
* Dropout, RELU

e NN as feature vector

* More recent networks:
¢ VGG

* ResNet
* Domain adaptation
e Transfer learning, fine-tuning
 Example: Python detection



References

* http://neuralnetworksanddeeplearning.com/chapl.html

* https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/

* Coursera (Deep learning specialization)
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A problem

output layer
input
layer

 Will an MLP that recognizes the left image as a flower
also recognize the one on the right as a flower?






Convolutional Neural Network (CNN)

* A class of Neural Networks

* Takes image as input (mostly)
* Make predictions about the input image

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Neural Network vs CNN

autputs

* Image as input in neural network inputs

* Size of feature vector = HxWxC

* For 256x256 RGE image
* 196608 dimensions

inpaut lager hidden |ayer QUTPUT [ayver

* CNN - Special type of neural network

* Operate with volume of data
* Weight sharing in form of kernels

Source: http://cs231n.github.io
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What is a convolution

Example 5x5 image with binary

pixels Example 3x3 filter bias
111111010 1| 0 1
O| 111 1|0 0 110
O] 0| 1 1 1 110 1

oO(1(1]0]O0

3 3
2(i, ) = Z Zf(k, DIG+1j+k)+b
k=1

=1

* Scanning an image with a “filter”

— Note: a filter is really just a perceptron, with weights
and a bias

32



What is a convolution

0] [1]o]1 1. 1| 1. [BGSEG
bias [3fora] |0 1]1[1]0] [4
Filter 0. Q. 1. [EEuit
0 I 40 I L
0111110|0
Convolved
npuLveip Feature

* Scanning an image with a “filter”

— At each location, the “filter and the underlying map values are
multiplied component wise, and the products are added along with
the bias

33



The “Stride” between adjacent
scanned locations need not be 1

0 1]10]1 1 1 1}‘:l Om 0:.:1
. 011]0
blas 1 0 1 0 1 1xl:l 1x1 Oxﬂ 4 4
Filter olol1l111
x1 x0 x1
0] 0] 1 110
O]l]1]1101]0

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time
— E.g. with a “hop” of two pixels per shift 34



The “Stride” between adjacent
scanned locations need not be 1

o] [1]o]1 1|11|1]0]o0
L] 010
bias  [FT1oM7 o|l1|1f1]0 4 | 4
Filter olof1]|1]1 2

o
e
=
=
o

x0 1 x0

O
-
-
o
o

1 x0 x1

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time

— E.g. with a “hop” of two pixels per shift 35



The “Stride” between adjacent
scanned locations need not be 1

0 11011 1 1 1 0 0
. 01110
bias 1517 of1]1]|1]o0 4 | 4
Filter o|lofz1f2|1, 2 | 4
0 0 lxﬂ 1}':1 x0
0 1 1 0 0
x1 x0 x1

* Scanning an image with a “filter”
— The filter may proceed by more than 1 pixel at a time
— E.g. with a “hop” of two pixels per shift 36



Extending to multiple input maps

F\\tef"'

All maps ’/,izggg;;’

|

| & B |
2(i, ) = Z Z Z Ws (D, K, DY, (i + L j + k) + b
p k=1l1l=1

 The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

37



Extending to multiple input maps

O

All maps ’//,//;;;;:

x

[ L L \
e S Z Z 2‘ Ws (0, ke, DY, (i +1,j + k) + b
p k=1lI1l=1

 The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

38



Extending to multiple input maps

bias m %// ...

=5 /
All maps /’///,,f’,’
A conv Qitio”

... & \
2(i, ) = Z Z Z Ws (0, DY, (i +1,j + k) + b
p k=1l1=1

 The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

39



Extending to multiple input maps

All maps /”f@}gg;;’

I

( i
2(i. 1) = Z Z Z Ws (D, K, DY, (i +1,j + k) + b
p k=1l1l=1

* The computation of the convolutive map at any
location sums the convolutive outputs at all
planes 20



Extending to multiple input maps

All maps ’//,//;;;;:

x can®

[ L L )
205, ) = Z Z Z Ws (0, b, DYy (i +1,j + k) + b
p k=1l=1

 The computation of the convolutive map at any
location sums the convolutive outputs at all
planes

41



The size of the convolution

M XM

bias Size: N XN

Filter ?

* Imagesize: N X N

* FilterrM XM

e Stride: §

* Output size (each side) = |[(N — M) /S| + 1

— Assuming you’re not allowed to go beyond the edge of the input .



Convolutional Network

* Convolution network is a sequence of these layers

32

>

6 5x5x3 filters

43



Convolutional Network

* Convolution network is a sequence of these layers

32

>

6 5x5x3 filters

44



Parameters

Activation maps

32x32x3 image

32 30

>

Convolution layer

3 6

6 3x3x3 kernels — 6x3x3x3 parameters = 162

45



2D Convolution - dimensions

7x7 map 3x3 filter

Output activation map 5x5
Output size

N-F+1

(7-3+1)=5

N — input size
F — filter size

CAP4453 46



Stride

7x7 map 3x3 filter

Filter applied with stride 2

CAP4453 47



Stride

7x7 map 3x3 filter

Filter applied with stride 2

CAP4453 48



Stride

7X7 map 3x3 filter

Filter applied with stride 2

Activation map size 3x3

Output size
(7-3)/2+1=3

(N-F)/S + 1

CAP4453 49



Stride

7x7 map 3x3 filter

Filter applied with stride 3

CAP4453 50



Stride

X7 map

CAP4453

3x3 filter

Filter applied with stride 3
Cannot cover perfectly

Mot all parameters will fit
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Stride

X7 map

CAP4453

3x3 filter
Output size (N-F)/S + 1
N=7 F=3

Stride 1
(7-3)/1+1=>5
Stride 2
(7-3)/2+1=>3
Stride 3
(7-3)/3+1=>2.33

52



Solution

0| |1]0]1
bias 0110
1]0]1

Filter

ojlojo]o|O |0 | O
ojlooj]o|lo|Oo |~ | O
oOlRr|lO]|lO |~ |~=]|]O
ol Pl IEFE]l~=] O
o|jloco]lrLr |, |, ]|O|O
oj|jloco|]lo|lr,r|O]|]O| O
ojlojlo|jlOojloOo]jl0o0 ] o

* Zero-pad the input

— Pad the input image/map all around

— Pad as symmetrically as possible, such that..

— For stride 1, the result of the convolution is the
same size as the original image



Padding

« Zero padding in the input

olojofojojofo For 7x7 input and 3x3 filter

If we have padding of one pixel

Output
Ix7

Size (recall (N-F)/S+1)
(N-F+2P)/S + 1

s I Y ) e Y B I B e B e = O =
|l ol ol Qo|lo|lo|lo)]la] O
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Padding

« Zero padding in the input
glajof{O0l0O0]0])]0

Common to see,

(F-1)/2 padding with stride 1 to preserve
the map size

o o)) 3| a
o o)l o] O

N =(N-F+2P)/S + 1
= (N-1)S = N-F+2P
= P=(F-1)/2

o ol ) o] O
o | ol o) o] O
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Why convolution?

Convolutional neural networks are, in fact, equivalent to scanning
with an MLP

— Just run the entire MLP on each block separately, and combine results
» As opposed to scanning (convolving) the picture with individual neurons/filters

— Even computationally, the number of operations in both computations
is identical

» The neocognitron in fact views it equivalently to a scan

So why convolutions?
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Convolutional Neural Networks

K, total filters
Filter size: L X L X 3

Small enough to capture fine features
(particularly important for scaled-down images)

What on earth is this?

I X Iimage

* Inputis convolved with A set of K, filters
— Typically K, is a power §# 2, e.g. 2, 4, 8,16, 32,..
— Filters are typically 5x5, 3x3, or eve

57



A 1x1 filter is simply a perceptron that operates over
the depth of the map, but has no spatial extent

— Takes one pixel from each of the maps (at a given location)
as input 58



Convolutional Neural Networks

K, total filters
Filter size: L X L X 3

Parameters to choose: K;,L and S
1. Number of filters K,
2. Size of filters L x L x 3 + bias
3. Stride of convolution S

I x I image Total number of parameters: K, (3L* + 1)

* Inputis convolved with a set of K, filters
— Typically K; is a power of 2, e.g. 2, 4, 8, 16, 32,..
— Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
— Typical stride: 1 or 2
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A convolutional layer

I L ]
.
]
[ ]
- H
.
]
4 L ]
— ]
ﬁ
Previous /
| Previous
ayer | I
ayer
C,QTN'D

\ay el

* The convolution operation results in a convolution map
* An Activation is finally applied to every entry in the map

60



Convolutional Neural Network (CNN)

* A class of Neural Networks

* Takes image as input (mostly)
* Make predictions about the input image

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



The other component
Downsampling/Pooling

E 7 P C E -
’jf -"; E { i ; I Output
: i ANEENE »
IBIEARRL LA L HE
= U
___,..-""
ﬁ "LE- % /F;""/"///\
w | wiﬂfjﬂig
'%/ / Q Multi-layer
Zomout " cm"‘;n ooV ot Perceptron

* Convolution (and activation) layers are followed intermittently by
“downsampling” (or “pooling”) layers
— Often, they alternate with convolution, though this is not necessary
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Pooling

* Makes the representations
smaller

* Operates over each activation
map independently

224x224x64
y. /
£ _.

112x112x64
pool

- -
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6

+44 4444+
+44 4444+
+44 44444
0000008 E

* Max pooling selects the largest from a pool of
elements

* Pooling is performed by “scanning” the input
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Pooling

» Kernel size
» Stride

Single depth slice

1(1[2|4
5|/6|7|8
3|2|1]0
1 | 2 [F3ila

max pool with 2x2 filters
and stride 2

>

CAP4453
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Alternative to Max pooling:
Mean Pooling

Single depth slice

1 1 2 4
Mean pool with 2x2
5|16 | 7|8 filters and stride 2 3.25|5.25
>
3 2 1 0 2 2
1 2 3 4
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Convolutional Neural Network (CNN)

* A class of Neural Networks

* Takes image as input (mostly)
* Make predictions about the input image

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected



Convolutional Neural Networks

K, filters of size:
LxLx3 I %]

B

The layer includes a convolution operation
V4 followed by an activation (typically RELU)

(1} L L
|:> 6 20N = Y Y Y wPe kDI +kj+ D+ by

ce{R,G,B} k=1 I=1

/ : D) = £ (206 ))

Ve

I X Iimage

* First convolutional layer: Several convolutional filters
— Filters are “3-D” (third dimension is color)
— Convolution followed typically by a RELU activation

* Each filter creates a single 2-D output map 68



Convolutional Neural Networks

Filter size:
LxLx3 I X1

[1/D] x [(1/D]

The layer pools PxP blocks
Y y®| of Y into asingle value

1 1 .

It employs a stride D between
adjacent blocks

(1) | pool
[> - E> U2 ULy = max YOk,

ke{(i—1)D+1, iD},
]
/ [ ]
L ]

le{(j—1)D+1, jD}
]r{l}
K, UE)

/

I X I'image

* First downsampling layer: From each P X P block of each
map, pool down to a single value

— For max pooling, during training keep track of which position
had the highest value >



Convolutional Neural Networks

Wy:K, XL, XL,
Wh:3XLXL m=1..K,
m=1..K,

K, xIxI K, x[1/D] x |1/D]

V4w D Hag |9
1

K

Pool: P x P(D)

Kn_q L, L
zV(i, j) = y Su‘ Su‘ Wil ok, DUV G+ K j + D) + b

r=1 k=1 1=1

Y (0.)) = f (20 G )

* Second convolutional layer: K, 3-D filters resulting in K, 2-D maps
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Convolutional Neural Networks

W,:K, XL, XL,

Wy:3XLXL m=1..K,
m = ]-"'Kl
KixIxI
II
I:> % (1)
O

Pool: P x P(D)

P™(ijy= argmax Y(kI)
kef{(i—1)d+1, id},
le{(j—1)d+1, jd}

Up (i) = Y (B (i )
* Second convolutional layer: K, 3-D filters resulting in K, 2-D maps

* Second pooling layer: K, Pooling operations: outcome K, reduced 2D
maps
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Convolutional Neural Networks

Wh:K, XL, XL,
Wny:3 XL XL m=1..K,
m=1..K,

K, xIxI K, x[1/D]x[1/D]

(1)
Ye, [> U;(;?

Pool: P x P(D)

* This continues for several layers until the final convolved output is fed to an MLP .



Parameters to choose (design choices)

Number of convolutional and downsampling layers
— And arrangement (order in which they follow one another)

For each convolution layer:
— Number of filters K;

— Spatial extent of filter L; X L;
» The “depth” of the filter is fixed by the number of filters in the previous layer K;_;

— The stride S;

For each downsampling/pooling layer:
— Spatial extent of filter P; X P;
— The stride D;

For the final MLP:

— Number of layers, and number of neurons in each layer
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Binary classification

» Target class present or not?
* Single output
* Two outputs

BUtpUES

Hapmals ¢ ALl il

input Layer hidden layer output layer

74



Multi-class

* One prediction for each class

@ nput Layer @ Hidden Layer @ Output Layer

CAP4453 75



Softmax activation

scores = unnormalized log probabilities of the classes.

P(Y =k|lX =z;) = 55:-, where |8 = f(‘”ﬁ W)

cat 3.2
car W

frog -1.7

CAP4453 76



Softmax activation

cat

car

frog

scores = unnormalized log probabilities of the classes.

'
;€9

3.2
5.1
-1.7

CAP4453

where

8§ = f(z;;m
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Softmax activation

scores = unnormalized log probabilities of the classes.

P =KX= 2) = ] e [s= fCo:

cat 3.2 24.5
exp

car 51 — |164.0
frog -1.7 0.18

CAP4453 78



Softmax activation

scores = unnormalized log probabilities of the classes.

PY =KX =2) = 55 wnee [s = f(zi; W)

cat 3.2 245 | 0413
i 51 2 [164.0 = | 0.87
wg |17 0.18 0.00

probabilities

CAP4453 79



Multi-label

* Multiple classes can be active

sigmoid function

* Softmax will not work 10 p—
* Use sigmoid activation 08 |

06+

04

CAP4453 80



Why not correlation neural network?

* |t could be

* Deep learning libraries actually implement correlation

* Correlation relates to convolution via a 180deg rotation
* When we learn kernels, we could easily learn them flipped
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Digit classification

Cg S| C* Sv I n;
mput feature maps  feature maps feature maps feature maps output
32x 32 a3 _28:&_28_ _ixl-‘_ lelO 5x35
T \T =
S G N\ o,
| It N T
-—;i | - : : \\ L™ Oax.
V ‘ l\'-\\ O N\
5x5 2x2 5x5 \ ) N\
convolution \ subsampling convoluton 2x2 \ \ O fully \
subsamplmg \\ connected

feature extraction classification
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Learning phases [ o ]

Images

Training |GEEXXIE
TrerYyY

- a-a h r-.l L i i

Image . Trained
I' Features jl-l' HELLTT classifier ]

Al I ﬂ'-l- Dl
- S . ]
'!l... el o3 | '}.1.

| T Thew L .

Image

not in n - {Image Features] -[ Apply classifier ]{ Prediction ]

training set

Testing
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General CNN architecture

/,.,— Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

End to end learning!

CAP4453 84



learnable

218w o I
1

K

Iearnnf>

* Parameters to be learned:

Pool: P X P(D)

— The weights of the neurons in the
— The (weights and biases of the) filters for every convolutional layer

85



Backpropagation: Final flat layers

K

EA'J e ) . @I%

1 K,

dDiv(0(X),d(X))

( dz (i)

0(X)

K\

1
Y

<: Need adjustments here

* Backpropagation from the flat MLP requires

special consideration of

— The pooling

ayers (particularly Maxout)

— The shared computation in the convolution layers
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Training Issues

* Standard convergence issues

— Solution: RMS prop or other momentum-style
algorithms

— Other tricks such as batch normalization

* The number of parameters can quickly
become very large

* Insufficient training data to train well
— Solution: Data augmentation
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Data Augmentation

Original data Augmented data
) y | & J - .
5 [ P N <> 3\ ® )
; w | € : \ 4 |4

rotation: uniformly chosen random angle between 0° and 360°

translation: random translation between -10 and 10 pixels

rescaling: random scaling with scale factor between 1/1.6 and 1.6 (log-uniform)
flipping: yes or no (bernoulli)

shearing: random shearing with angle between -20° and 20°

stretching: random stretching with stretch factor between 1/1.3 and 1.3 (log-
uniform) 88



https://cs.stanford.edu/people/karpathy/convn
etis/demo/cifar10.html
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

AlexNet

* 1.2 million high-resolution images from ImageNet LSVRC-2010 contest
« 1000 different classes (softmax layer)
* NN configuration
* NN contains 60 million parameters and 650,000 neurons,
* 5 convolutional layers, some of which are followed by max-pooling layers
* 3 fully-connected layers

3l ?-\;L'__- j\]- T > >
NI | 1} 3l ) 3. .
5 L
’ o d
: 162 192 128 2048 2048 \deNse
o7 128 _ —
13 13
K 2\ \
. A [\
5 ‘*-.‘ 3‘-' \| 3] o e
- L3 B ense ense
\ p7 ) «J 3J B
3 1000
192 192 128 Max L
. 2048
Max 128 Max pooling 2048
pooling pooling

3 48

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks™ NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada 90



Krizhevsky et. al.

Input: 227x227x3 images

Convl: 96 11x11 filters, stride 4, no zeropad
Pool1: 3x3 filters, stride 2
“Normalization” layer [Unnecessary]
Conv2: 256 5x5 filters, stride 2, zero pad
Pool2: 3x3, stride 2

Normalization layer [Unnecessary]
Conv3: 384 3x3, stride 1, zeropad
Conv4: 384 3x3, stride 1, zeropad
Conv5: 256 3x3, stride 1, zeropad

Pool3: 3x3, stride 2

FC: 3 layers,
— 4096 neurons, 4096 neurons, 1000 output neurons
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AlexNet : Network Size

55

Stride

* Input: 227x227x3 images

* First layer (CONV1): 96 11x11 filters applied at stride 4
* What is the output volume size? (227-11)/4+1 = 55

* What is the number of parameters? 11x11x3x96 = 35K

CONV1

256

VIAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
MAX POOL3
FC6

FC7

FC8
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55

Stride

* After CONV1: 55x55x96

* Second layer (POOL1): 3x3 filters applied at stride 2
* What is the output volume size? (55-3)/2+1 = 27

* What is the number of parameters in this layer? 0

AlexNet : Network Size

CONV1]

13

MAX POOL1

256

pooling

NORM1
CONV2

MAX POOL2
NORM2
CONV3
CONV4
CONV5

MAX POOL3
FC6

FC7

FC8
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55

7

Stride
of 4

27

AlexNet : Network Size

* After POOL1: 27x27x96
* Third layer (NORM1): Normalization
* What is the output volume size? 27x27x96

13

CONV1
—MAXPQQL1
NORM1

256

pooling

Max

pooling

CONV2

MAX POOL2
NORM2
CONV3
CONV4
CONV5

MAX POOL3
FC6

FC7

FC8
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AlexNet : Network Size

VWooNOULAEWNRE

N
PWN PO

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O
[27x27x96] MAX POOL1: 3x3 filters at stride 2
27%x27%x96] NORM1: Normalization layer
[27%x27%x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1
. [6x6x256] MAX POOL3: 3x3 filters at stride 2

. [4096]
4096
(1000

FC6: 4096 neurons
FC7: 4096 neurons
FC8: 1000 neurons (class scores)

CAP4453

CONV1 35K

MAX POOL1

NORM1

CONV?2 307K
MAX POOL2

NORM2

CONV3 884K
CONV4 1.3M
CONV5 442K
MAX POOL3

FC6 37M
FC/ 16M
FC8 4V
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Alexnet: Total parameters

650K neurons
60M parameters

630M connections

10 patches

Testing: Multi-crop

— Classify different shifts of the image and vote over
the lot!
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Learning magic in Alexnet

Activations were RELU
— Made a large difference in convergence

“Dropout” —0.5 (in FC layers only)
Large amount of data augmentation
SGD with mini batch size 128
Momentum, with momentum factor 0.9
L2 weight decay 5e-4

Learning rate: 0.01, decreased by 10 every time validation accuracy
plateaus

Evaluated using: Validation accuracy

Final top-5 error: 18.2% with a single net, 15.4% using an ensemble of 7
networks

— Lowest prior error using conventional classifiers: > 25%
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ImageNet

Figure 3: 96 convolutional
kernels of size 11x11x3
learned by the first
convolutional layer on the
224x224x3 input images. The
top 48 kernels were learned
on GPU 1 while the bottom 48
kernels were learned on GPU
2. See Section 6.1 for details.

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada
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container shi motor scooter
container ship motpr scooter
lifeboat go-kart

amphibian

' y
grille mushroom grape splder monkey .
pickup Jelly fungus elderberry titi ’
beach wagon gill fungus shire bullterrier indri
fire engine | dead-man's-fingers | currant howler monkey |} ey \lldJ )4

Eight ILSVRC-2010 test images and the five Five ILSVRC-2010 test images in the first
labels considered most probable by our model. ~ ¢lumn. The remaining columns show the six
The correct label is written under each image, training images that produce feature vectors in
and the probability assigned to the correct label the last hidden layer with the smallest Euclidean
is also shown with a red bar (if it happens to be _dlstance from the feature vector for the test

in the top 5). nRge:

Krizhevsky, A., Sutskever, |. and Hinton, G. E. “ImageNet Classification with Deep Convolutional
Neural Networks” NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada
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ZFNet

image size 224 13 13 13 _
filter size 7 NE 3
&I 512 | ¢1 ..\1:]24 ‘5\12
stride 2 3%3 max
pool 4096
stride 2 units
6 256 ||

Input Image

Layer 3 Layer 4

ZF Net Architecture

e Zeiler and Fergus 2013

* Same as Alexnet except:
— 7x7 input-layer filters with stride 2
— 3 conv layers are 512, 1024, 512
— Error went down from 15.4% =2 14.8%

* Combining multiple models as before

Layer 5

units

class
softmax

Layer& Layer?7 Output
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Visualizing Convolution

Low-Level
Feature

Mid-Level
—_—

Feature

High-Level
— —_

Feature

Trainable
Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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VGGNet

Simonyan and Zisserman, 2014
Only used 3x3 filters, stride 1, pad 1
Only used 2x2 pooling filters, stride 2

Tried a large number of architectures.

Finally obtained 7.3% top-5 error

using 13 conv layers and 3 FC layers
— Combining 7 classifiers
— Subsequent to paper, reduced error to

6.8% using only two classifiers

Final arch: 64 conv, 64 conv,

64 pool,

128 conv, 128 cony,

128 pool,

256 conv, 256 conv, 256 cony,

256 pool,

512 conv, 512 conv, 512 convy,

512 pool,

512 conv, 512 conv, 512 cony,

512 pool,

FC with 4096, 4096, 1000

ConvNet E'Dﬂflg-lll';]'[il:rﬂ

A A-LEN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight | 19 weight
lavers lavers lavers lavers lavers lavers
input (224 x 224 RGB image)

convi-64 convi-o4 comv3-64 conv3-64 convi-o4 conv3-64
LEN conv3-64 conv3-64 convi-64 convi-64

maxpool
convi-128 | comv3-128 | comv3-128 | comv3-128 | conv3-128 | conw3-128
conv3-128 | conw3-128 | conw3-128 | conw3-128

maxpool
conv3-256 | conw3-256 | comv3-256 | comv3-236 | comv3-236 | comw3-236
convi3-256 | comv3-256 | comv3-236 | comv3-236 | comv3-256 | comw3-236
convl-256 | comv3-256 | conwv3-2356
conv3-256

maxpool
conv3->12 | comw3-512 | comv3-312 | comw3-512 | comnw3-512 | conw3-512
conv3-312 | conv3-312 | comv3-312 | comv3-512 | conw3-512 | comw3-312
convl-512 | comv3-512 | comv3-312
conv3-512

maxpool
conv3->12 | comv3-512 | comv3-312 | comw3-512 | conw3-512 | comw3-512
conv3-312 | conv3-312 | comv3-312 | comv3-512 | conw3-512 | comw3-312
convl-512 | comv3-512 | comv3-312
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

~140 million parameters in all! <

| Madness!
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* Multiple filter sizes simultaneously

* Details irrelevant; error 2 6.7%
— Using only 5 million parameters, thanks to average pooling 103
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Figure 2. Residual learning: a building block. 3 ik
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Resnet: 2015
— Current top-5 error: <3.5%

— Over 150 layers, with “skip” connections..
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weight layer

}'{x} ‘ relu

weight layer

X
identity

Figure 2, Residual learning: a building block.

Last layer before addition must have the same number of filters as the
input to the module

Batch normalization after each convolution
SGD + momentum (0.9)

Learning rate 0.1, divide by 10 (batch norm lets you use larger learning
rate)

Mini batch 256
Weight decay 1e-5
No pooling in Resnet 105



Questions?



