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Object detection
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Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
{Navneet.Dalal Bill. Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Ject recognition, adopting linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriptors, we show experimentally that grids
of Histograms of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding that fine-scale gradients, fine
orientation binning, relatively coarse spatial binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and back grounds.

1 Introduction

We briefly discuss previous work on human detection in
§2, give an overview of our method §3, describe our data
sets in 4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an extensive literature on object detection, but
here we mention just a few relevant papers on human detec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou et
al [ 18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of leamed exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er al [22] build an efficient

 CVPR 2005
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Sliding Window Technique

e Score every subwindow
e extract features from the image window
* classifier decides based on the given features.

* It is a brute-force approach

d E
g — | Car/non-car
Classifier

Feature
\_ extraction )
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Person detection
with HoG’s & linear SVM's (so far)

 Histogram of oriented
gradients (HoG): Map each
grid cell in the input window to
a histogram counting the
gradients per orientation.

TEEEANM

* Train a linear SVM using
training set of pedestrian vs.
non-pedestrian windows.

Dalal & Triggs, CVPR 2005



Support vector machines

* Find hyperplane that maximizes the margin between the positive and

negative examples
; E ° X positive (y =1): X-W+b>1

Xxnegative(y=-1): X-w+b<-1

® For support vectors, X-W+b=+1

e Distance between point |X-W+Db]|
and hyperplane: |w |

Therefore, the marginis 2 / ||W|

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and
Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVMs: Pros and cons

® Pros
* Kernel-based framework is very powerful, flexible

* Training is convex optimization, globally optimal
solution can be found

 Amenable to theoretical analysis

* SVMs work very well in practice, even with very small
training sample sizes

e Cons

* No “direct” multi-class SVM, must combine two-class
SVMs (e.g., with one-vs-others)

 Computation, memory (esp. for nonlinear SVMs)




1. Compute HOG of the whole image
¥ at multiple resolutions!

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

> W

3. Apply non-maximal
suppression (NMS)

Image pyramid HOG:.feature pyramid 12




Robot Vision

14. Object detection |l
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Outline

* Overview: What is Object detection?
* Top methods for object detection

* Object detection with Sliding Window and Feature Extraction(HoG)
* Sliding Window technique
 HOG: Gradient based Features

* Machine Learning
e Support Vector Machine (SVM)

* Non-Maximum Suppression (NMS)
* Implementation examples
* Deformable Part-based Model (DPM)

CAP4453 14



Motivation

* Problem: Detecting and localizing generic objects from categories
(e.g. people, cars, etc.) in static images.

* |ssues to overcome:
* Changes in illumination or viewpoint
* Non-rigid deformations, e.g. pose
* Intraclass variability, e.g. types of cars

15



Previous Works

Dalal & Triggs ‘05 Fischler & Elschlager ‘73

* Histogram of Oriented Gradients relzenszwalb & Huttenlocher 100
(HOG e Pictorial structures

* Support Vector Machines (SVM) * Weak appearance models
Training * Non-Discriminative training

* Sliding window detection

Original Image Histogram of Oriented Gradients Pictorial Structures Model of a Face

16



= ] Filter F

Score of F at position p is

F-¢(p, H)

¢(p, H) = concatenation of
: HOG features from
HOG pyramid H subwindow specified by p

Original Image Extracted Gradient Positive Weights Negative Weights

Object Detection with
Histogram of Oriented
gradients

Combine HOG and Linear SVM

Detects objects using weighted HOG
filters

Inspect both positive and negative
weighted results

Human or not?



CVPR 2008
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Object Detection with Discriminatively Trained
Part Based Models

Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan

Abstract—We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able
to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detecticn challenges. While
deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the
PASCAL datasets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-
sensitive approach for data-mining hard negative examples with a formalism we call laternt SVAM. A latent SVM is a reformulation of
MI-SVM in terms of latent variables. A latent SWM is semi-convex and the training problem becomes convex once latent information is
specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive

examples and optimizing the latent SVM objective function.

Index Terms—Object Recognition, Deformable Models, Pictorial Structures, Discriminative Training, Latent SV

1 INTRODUCTION

Object recognition is one of the fundamental challenges
in computer vision. In this paper we consider the prob-
lem of detecting and localizing generic objects from
categories such as people or cars in stafic images. This
is a difficult problem because objects in such categories
can vary greatly in appearance. Variations arise not only
from changes in illumination and viewpoint, but also
due to non-rigid deformations, and intraclass variability
in shape and other visual properties. For example, peo-
ple wear different clothes and take a variety of poses
while cars come in a various shapes and colors.

We describe an object detection system that represents
highly variable objects using mixtures of multiscale de-
formable part models. These models are trained using
a discriminative procedure that only requires bounding
boxes for the objects in a set of images. The resulting
system is both efficient and accurate, achieving state-of-
the-art results on the PASCAL VOC benchmarks [11]-
[13] and the INRIA Person dataset [10].

LI | B ] al -

it has been difficult to establish their value in practice.
On difficult datasets deformable part models are often
outperformed by simpler models such as rigid templates
[10] or bag-of-features [44]. One of the goals of our work
is to address this performance gap.

While deformable models can capture significant vari-
ations in appearance, a single deformable model is often
not expressive enough to represent a rich object category.
Consider the problem of modeling the appearance of bi-
cycles in photographs. People build bicycles of different
types (e.g., mountain bikes, tandems, and 19th-century
cycles with one big wheel and a small one) and view
them in various poses (e.g., frontal versus side views).
The system described here uses mixture models to deal
with these more significant variations.

We are ultimately interested in modeling objects using
“visual grammars”. Grammar based models (e.g. [16],
[24]. [45]) generalize deformable part models by rep-
resenting objects using wvariable hierarchical structures.
Each part in a grammar based model can be defined

directlv or in terms of other narts. Moreover. crammar

18



Successful detection method

e Joint winner in 2009 Pascal VOC challenge with the Oxford Method.
* Award of "lifetime achievement” in 2010.
* Mixture of deformable part models

* Each component has global template + deformable parts
* HOG feature templates

* Fully trained from bounding boxes alone



Key idea

* Port the success of Dalal & Triggs into a part-based model

DPM D&T PS

CAP4453 20



Part-based models

* Origins in Fischler &
Elschlager 1973

* Model has two components ;51 € P “Q RIGHT
- parts :
(2D image fragments)

- structure
(configuration of parts)

MOUTH
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MODELS

Deformable Part Models (DPM)

Matching

Mixture Models

22




Deformable Part Models (DPM)

* Represent object by several parts
* Model is deformable, i.e. parts can move independently of each other

* Parts are “punished” for being far away from their origin

23



DPM l|dea

' I"'I..]
alne

Deformation

Root filter Part filters N
costs




1. Compute HOG of the whole image
¥ at multiple resolutions

2. Score every window of the feature
P—_ pyramid

> score(l,p) =w-¢d(,p)

FROM ,
TRAINING

> W

3. Apply non-maximal
suppression (NMS)

Image pyramid HOG:.feature pyramid -




DPM = D&T + parts

Po
L
H"“‘i
Z [ ]
~ gy
“h ;HHHHH
i T e
A Ee W1E
. . [FMR CVPR'08]
Image pyramid HOG feature pyramid [FGMR PAMI'10]

e Add parts to the Dalal & Triggs detector
- HOG features
- Linear filters / sliding-window detector
- Discriminative training 26



Deformable Part Models (DPM)

Model has a root filter F,and n part models represented by (F,v,d))
* F;is the i-th part filter
* v, is the s the origin of the i-th part relative to the root

* d; is the deformation parameter

Coarse Filter High-res Part Filter

e N A T~

Deformation models

27




Sliding window detection with DPM

(@ (&
Po
N~ [ | ‘
N~
> ]
\\H\
; AR
T'H
1
Image pyramid HOG feature pyramid
Z= (pl,---,Pn)

score(l, pp) = m: ’anm,(l p) — Zd (Po, i)

=
Fllter scores Spring costs 28



Deformable Part Models (DPM)

n n
score(po, -, Pn) = Z F,i - ¢(H,p;) — Z d; - pq(dx;,dy;) + b <—— Bias

=0 =1 \
Filters Feature of Deformation Displacement of
subwindow at Parameters part i
location p;
* Score of hypothesis z... score(z) = B -yY(H,z)
«  Unknown... B = (Fo, ..., Fp,dq, ..., dp, b)
b Known... l/)(H! Z) = ((l)(H, pO)r ey (I)(Hr pn): _¢(dxlr dyl)r ) —(,b(dxn, dyn)r 1)
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Deformable Part Models (DPM)

Data term Spatial info

n n
score(po, -, pn) = ) Fi* $UH,p) H ) di+ daldrydy) +b ~—  bis
i;o’ / i=1

N

/ / \ \
. Feature of Deformation Displacement of
Filters . .
subwindow at Parameters parti
location p;

/

|

Initial condition:  d; = (0,0,1,1) - Displacement Function:  $a(dx,dy) = (dx,dy, dx?,dy?)
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Matching

* The overall score of a root location is computed according to the best possible placement of parts
* High scoring root locations define detections

* High scoring part roots define object hypothesis

score(py) = max score(pg, .., Pn)
P1,--»Pn

31



DPM detection

test image

CAP4453 32



DPM detection

test image

feature map at 2x resolution

..........

.......
llllllllllll
....

model

|||||

..........

.......

Root scale Part scale

repeat for each level in pyramid
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DPM detection

test image

feature map feature map at 2x resolution

model

.........

.......

root filter

My

response of root filter

score(l,po) - p{na};(:o ml I pl Zd(PO P,
T =0

34



DPM detection

test image

feature map at 2x resolution

feature map

= {1133 l model
| B
X 1 -gt part filter n-th part filter

root filter ass m
responses of part filters
response of root filter \

score( = p{fla,},(’n 2 m;(1, p;) Z di(po, pi)

35



My

feature map

,,,,,

......

\d

root filter

response of root filter

DPM detection

test image

feature map at 2x resolution

model

1-st part hlter ?

n-th part filter

responses of part filters
-max [m;i(1, pi) — di(Po, Pi)]

transformed responses Generalized distance transform
Felzenszwalb & Huttenlocher ‘00
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DPM detection

test image

feature map feature map at 2x resolution

----------

model

.........

......

e

@ 1-st part filter n-th part filter

responses of part filters
-max [m;i(1, pi) — di(Po, Pi)]

transformed responses

root filter

v

response of root filter

3

score(l, po) = max » mji(l,p;) — Z di(po, pi)

Piy:«+sPn L
i=0 i=1
= mo(l, po) + Z max [mi(1, pi) — di(po, Pi)]
=1
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DPM detection

test image

feature map feature map at 2x resolution

|||||||||||

model

1-st part hlter ?

.........

......

n-th part filter

responses of part filters
-max [m;i(1, pi) — di(Po, Pi)]

transformed responses

root filter

response of root filter

All that’s left: combine evidence

38



,,,,,

......

A

root filter

v

response of root filter

downsample

>

test image

feature map at 2x resolution

o

DPM detection

model

?n—th part filter

m;
responses of part filters

max [m,—(l, p,) == di(pOa pl)]

!

1-st part filter

transformed responses downsample

-+

detection scores for
each root location

» -,
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Person detection progress

Progress bar:

AP 12%
2005

40



One DPM is not enough: What are the parts?

41



Mixture Models

*  Modelling for objects is done using
multiple orientations

* Models subject to translation and rotation

around the axis perpendicular to the page

42



Aspect soup

(Cjaeneral philosophy: enrich models to better represent the
ata

43



Results (PASCAL VOC 2008)

e Seven total systems competed

* DPM placed first in 7/20
categories
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Mixture models

’ll*\

!
¢
’
i
4
§
\
\

g

o T R
T R e Ll
A S e
L R P AR
LR S
s N N N

Data driven: aspect, occlusion modes, subclasses
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Pushmi—pullyu?

Good generalization properties on Doctor Dolittle’s farm

This was supposed to
detect horses 46



Latent orientation

Unsupervised left/right orientation discovery

AP 12% 27% 36% 45%
2005 2008 2009 2010

47



Summary of results

[DT'05] [FMR'08] 1 e .
AP 0.12 AP 0.27 [FGMR'10] :
AP 0.36 [GFM voc-releaseb)
AP 0.45
ﬁ ﬁ Example detections and derived filters
e [

— Part 3

Part 6
Dty - - f:uu 16 (mo occlusion) Parts 14 & occluder Parts 1.2 & occhuder
[Girshick, Felzenszwalb, McAllester '11]
AP 0.49

Object detection with grammar models

Code at www.cs.berkeley.edu/~rbg/voc-release5 48




Part 2: DPM parameter learning

given fixed model structure

?
?
o |7 %
' ?
7 ?
? ,
r:) I'?

component 1 component 2
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Part 2: DPM parameter learning

given fixed model structure training images y

?
?
o |7 %
' ? +1
- ?
? -
7 1 P

component 1 component 2
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Part 2: DPM parameter learning

given fixed model structure training images y
2
?

o %
' ?

2 ?
? .

7 1 P

component 1 component 2
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Part 2: DPM parameter learning

given fixed model structure training images
2
?

o |7 %
' ?

2 ?
? .

7 1 P
component 1 component 2

Parameters to learn:

— biases (per component)

— deformation costs (per part)
— filter weights

+1

52



Linear parameterization of sliding window score

Z = (pla ;Pn)
n
score(/, pp) = pﬁla?(n Z; m;(1, p;) z; di(po, pi)
= =
Filter scores Spring costs

Filter scores m,—(l, p;) — Wi (,b(l, Pf’)

sprngcosts  di(po, py) = d; - (b, dy, dx, dly)

score(l, pp) = maxw - ®(/, (pg, 2))
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Positive examples (y = +1)

x specifies an image and bounding box

We want

fw — - ®(x,
(x) zrél?(),f) w - ®(x, 2)

to score >= +1

Z(x) includes all zwith more than 70% overlap
with ground truth 54



Positive examples (y = +1)

Positive examples (y = +1)

x specifies an image and bounding box

We want

At least one
fw (x) = zfélg(f) w - ®(x, 2) configuration

scores high
to score >= +1

55



Negative examples (y =-1)

x specifies an image and a HOG pyramid location po

- S e A

We want

fw — - P )
(0 = mex w-0(x.

to score <= -1

Z(x) restricts the root to po and allows any
placement of the other filters 56



Negative examples (y =-1)

x specifies an image and a HOG pyramid location po

- S e A

3 - e, W
Po
~>L\ [
“
Z ]
\L‘\
N -‘-_I
iE
We want
fw(X) = max w - ®(x, 2)
z€Z(x) All configurations
score low

to score <= -1

Z(x) restricts the root to po and allows any
placement of the other filters 57



Typical dataset

300 — 8,000 positive examples

500 million to 1 billion negative examples
(not including latent configurations!)

Large-scale optimization!

58



How we learn parameters: latent SVM

E(w) = %HWHQ + CZ max{0,1 — yifw(x)}
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How we learn parameters: latent SVM

1
E(w) = S[[wl*+ C)_ max{0,1 — yify(x)}

1
E(w) = §||w||2 + CZ max{0, 1— zléliaﬁf) w - ®(x;, 2)}
icP

+C E max{0, 1+ ngix)w - P(x;,2) }
zZEL(x
icN

P: set of positive examples
N:. set of negative examples
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Latent SVM and Multiple Instance Learning via MI-SVM

Latent SVM is mathematically equivalent to MI-SVM
(Andrews et al. NIPS 2003)

Z1

Z3

Z2

latent labels for xi bag of instances for X

Latent SVM can be written as a latent structural SVM
(Yu and Joachims ICML 2009)

— natural optimization algorithm is concave-convex procedure
— similar to, but not exactly the same as, coordinate descent

61



Step 1

Zp; = argmax w(y - P(x;,2z) Vie P
ZGZ(X/)

This is just detection:

root

Image pyramid IiOG-itamr; pyramid [FMR CVPR'(8)
z=(p1,.:+s Pn)
score(l, pp) = Jmax Zm.{l P - Zd(Po P
=1
rll(u SCOres Spring costs corer urcodieg o er
IEARCENS il Genncton 500 for
_. sach w0t locaton
ow valvo ~

We know how to do this!
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Step 2

1
min §||W||2 + CZ max{0, 1-w - ®(x;, Zp;)}
ieP

+ C» max{0,14+ max w-P(x;,z
EZN { ze Z(x) ( )}

Convex!

A ST B g 2O IS | 63



Step 2

L
min §||w|| + CZ max{0, 1—w - ®(x;, Zp;)}

icP
+ CZ max{0, 1+ mza(x) w - P(x;,2)}
ZEL(X
ieN

Convex!

Similar to a structural SVM
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Step 2

L
min §||w|| + CZ max{0, 1—w - ®(x;, Zp;)}

icP
+ CZ max{0, 1+ mza,(x) w - P(x;,2)}
ZEL(X
ieN

Convex!
Similar to a structural SVM

But, recall 500 million to 1 billion negative examples!
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Step 2

L
min §||w|| + CZ max{0, 1—w - ®(x;, Zp;)}

icP
+ CZ max{0, 1+ mza,(x) w - P(x;,2)}
ZEL(X
ieN

Convex!
Similar to a structural SVM
But, recall 500 million to 1 billion negative examples!

Can be solved by a working set method

— “bootstrapping”

— “data mining” / “hard negative mining”

— “constraint generation”

— requires a bit of engineering to make this fast -



What about the model structure?

Given fixed model structure training images
2
7

o |7 %
' ?

2 ?
7 7 '

7 1 P
component 1 component 2

Model structure

— # components

— # parts per component
— root and part filter shapes
— part anchor locations

4
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Learning model structure

1a. Split positives by aspect ratio

(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c¢) Car comp. 3 (Phase 1)

1b. Warp to common size

1c. Train Dalal & Triggs model for each aspect ratio on its own
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Learning model structure

(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c) Car comp. 3 (Phase 1)

2a. Use D&T filters as initial w for LSVM training
Merge components

2b. Train with latent SVM
Root filter placement and component choice are latent

(d) Car component 1 (Phase 2) (e) Car component 2 (Phase 2) (f) Car comp. 3 (Phase 2)
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Learning model structure

LRI S S o S R R S
--/-Il#\

oo N

(d) Car component 2 (trained parts)

3a. Add parts to cover high-energy areas of root filters

3b. Continue training model with LSVM
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Learning model structure

A e * -
S .. " - b
> - X ' o

(a) Car component 1 (Phase 1) (b) Car component 2 (Phase 1) (c¢) Car comp. 3 (Phase 1)

without orientation clustering

N —— / A e it st L I

(a) Car component 1 (b) Car component 2 (¢) Car component 3

with orientation clustering 71



DPM learnt models



Results

73




Results

74



Effects of multiple models + parts

class: parson, year 2004 class: car, year 2006
1 B i i
0.9 &9[
ms[ 0.8
07F 07E
- DEf
E =] S .g
2 ‘A 05
3 0.5k @
& i X1 3
* o4}
\ 031 —— 1 Root (0.48)
0.3 :

=#=1 Root (0.24)
e 2 Root (0.24)
—=— 1 Root+Paris {0.38)

2ol 2 Root (0.58)
—#— 1 Root+Parts (0.55)
0.1}| =2 Root+Parts (0.62)
0.1H —%— 2 Root+Parts {0.37) 5 =¥—2 Root+Pars+BE (0.64)
¥— 2 Root+Parts+BB (0.39) e : o 0.1 02 0.3 0.4 05 0.6 o7

[N] 0.1 02 0.3 0.4 0S 0.6 o7 recall
racall
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Questions?



