Rules for Translating While to While3Addr

Paul Gazzillo, COP-5621 Spring 2024
January 25, 2024

Contents

1 Translation Rules
1.1 Notation e
1.2 Statements
1.3 Expressions e
1.3.1 Boolean Expressions
1.3.2 Relational Expressions
1.3.3 Arithmetic Expressions

N UL W W =

1 Translation Rules

1.1 Notation

All language interpretation rules have the following format:

evaluation of nested constructs (if necessary)

p b (while construct to evaluate) |} result of the evaluation

All expressions and statements are evaluated under a current program counter p.
Angle brackets () contain the symbols of a (while grammar construct to evaluate).
For example, (if b then s; else sq), refers to any if-then-else statement, where
b is the placeholder (nonterminal) for Boolean expressions and si, sy for state-
ments. The turnstile I indicates a context, as in the evaluation of the if state-
ment happens under the context p. In our semantics, the only context is the
current program counter p, which will be used to compute the addresses for
branches. The arrow |} just means “evaluates to”.

In summary, “p F (while construct to evaluate) | result of the evaluation”
means “given the program counter p the while construct evaluates to the result
of the evaluation”.

1.2 Statements

The result of an evaluation of a statement is a list of While3Addr instructions.
We separate the list of statements in to a separate symbol for readable, e.g.,

GENCOMPOUND below. The goto targets are represented by p variables, and
their computation is listed at the bottom of each rule that translates to goto
instructions.

prEs) VL pabE(so) bl o pub(sn) I In
Compound
pk (begin s1; S2; -+ sy, end) || GENCOMPOUND
GENCOMPOUND =
Iy
I
I,
p1L=p,p2 =p1 + |I1|7 ct yPn = DPn-1t |In—1|
pr <a> b (tm A) Assignment
pk (x :=a) || GENASSIGNMENT
GENASSIGNMENT =
T =1,
p F ‘U’ (tb)B) Dif F <Sl> U’ Sl Pelse - <52> ‘U SQ I
pt (if b then s else s2) | GENIF
GENIF =
B
if t, = 0 goto Pelse
S1
gOtO Pendif
Delse o)
Pendif -
bif = |B| +]-7pelse =pir + |Sl| + 17pendif = Pelse T+ |52| +1

pE®) I (ty, B) piek(s) 4 S While
1
pk (while bdo s) | GENWHILE
GENWHILE =
Phead B
if ¢, = 0 goto Pend
S
gOtO Phead
Pend -
Phead = P> Pbody = Phead 1 | B| + 1, Dend = Pbody + S| + 1

1.3 Expressions

Instead of outputting only the While3Addr, expressions also return the name of
a temporary variable that will hold the value of the expression. For instance, a
Num expression results in a While3Addr instruction that sets a new temporary
variable to a constant, e.g., ¢t := 5, so evaluation results in a tuple containing
both the temporary variable and the set of instructions, i.e., (¢,t :=5).

1.3.1 Boolean Expressions

e "

pk)4 (t, B)

pk (b) | (t, GENNOT) ot
GENNOT =

B
if t; =0 goto p;
t=0
gOt0 Pend

Drase 1t =1

Pend *

Palse = P + |B| + 3, Pend = Pralse + 1

pk(b1) I (t1,B1) p2t (b2) I (t2, Ba) And

pk (b1 and bs) || (t, GENAND)

GENAND =

B
By
if t; = 0 goto pralse
if to = 0 goto praise
t=1
010 Pend

Patse 1t =0

Pend

p2=p+ |Bl|7pfa1se =p2+ |BQI + 3, Pend = Pralse + 1

1.3.2 Relational Expressions

7

pF (b)) (t1,B1) p2 b (b2) I (t2, Ba)
pF (b1 and by) | (£, GENOR)

GENOR =
By
By
if t1 = 0 goto pright
t=1
801t0 Pend
Pright © if t2 = 0 goto Pralse
t=1
801t0 Pend
Pratse : £ =0
Pend *

p2=p+ |B1|»pright =p2+ |BQ| + 4»pfa1se = Pright + 3apend = Pralse + 1

ph(a1) ¥ (t1, A1) p2t(a2) | (2, A2)

pk (a1 = a2) | (t, GENEQUALS) Favals
GENEQUALS =

Ay
A
ts =11 —to
if ts = 0 goto Dirue
t=0
80t0 Pend

Dirue : =1

Pend *

p2=p+ |A1|,ptrue =p2+ |A2| + 4apend = Dtrue T 1

J

The While3Addr language only has two relational operators, < and =.

In

order to transform While programs, which supports <, >, >= and <=, we can

use the following equivalences to help us translate to While3Addr.

a<b=a—-b<0
a>b=b<a=b—a<0
a>b=-(a<b)=-(a—b<0)
a<b=-(a>b)=-(b<a)=-(b—a<0)

—~ o~ o~
w N
—_— — — ~—

Notice that there are two techniques used, i.e.,
1. Swap a and b to transform < to >
2. Negate the result to swap < to > or > to <

We can create a single generic code generator to support all four cases.

GENREL(tq, th, Vtrue, Vtalse) =

Ay
A
ts =1ty — tp
if tg < 0 goto Dirue
t = Vtalse
g010 Pend

Dtrue : T = Vtrue

Pend *

p2=p+ |A1|,ptrue =p2+ |A2| + 4apend = Dtrue T 1

Then we can use GENREL to define translations for each of the four relational
operators in the While language.

s N

ph(ar) ¥ (t1, A1) p2t(a2) | (2, A2)

Less Th
P F <(l1 < a2> ll (t, GENREL(tl,tQ,].,O)) s o

pl(ar) ¥ (t1, A1) p2 = (a2) | (2, A2)

Greater Th
pk (a1 > ag) | (t, GENREL(t2,#1,1,0)) reater Shan

pt{a) I (t1,41) pat(az) | (t2, A2)
pk <(L1 >= a2> { (t, GENREL(tl,tQ,O, 1))

Greater Than or Equals

pl(a1) § (t1,A1) pat(az) | (2, A2)

p = <CL1 = a2> U« (t, GENREL(tQ,tl,O, 1))

Less Than or Equals

1.3.3 Arithmetic Expressions

Var

pk () I (2,0)

ph(a1) ¥ (t1, A1) p2t(a2) | (2, A2)

pt {ajop,az) | (t, GENARITHMETIC)

GENARITHMETIC =
Ay
A

p2 =p+ |Ai]

Arithmetic

t= tlopatg

