Code generation: globals, functions
Lecture 09
Table of Contents
Code generation overview
- Recall: compiler takes source language and produces target language
- Translate, not execute
- Generates equivalent program in assembly
- Each language construct has corresponding assembly code patterns
Assembly file layout
- data
- Fixed size, global data section (bss section is zeroed out)
- rodata
- Immutable data, e.g., for string constants
- text
- Executable part
Note that the heap and stack and created at runtime by the OS
https://wiki.osdev.org/ELF#Loading_ELF_Binaries https://stackoverflow.com/questions/9226088/how-are-the-different-segments-like-heap-stack-text-related-to-the-physical-me
simple_function.simplec
f(a, b) : function(int, int) -> int {
return a + b;
}
main {
return f(1, 3);
}
simple_function.s
.file "stdin"
.text
.globl f
.type f, @function
f:
# emit the function prologue
push %rbp
mov %rsp, %rbp
sub $32, %rsp
push %rbx
# move parameters into the stack
mov %rdi, -8(%rbp)
mov %rsi, -16(%rbp)
# generate code for the body
# generate code for the return expression
# generate code for the left operand
mov -8(%rbp), %rax
push %rax
# generate code for the right operand
mov -16(%rbp), %rax
push %rax
# pop the right operand
pop %rbx
# pop the left operand
pop %rax
# do the addition
add %rbx, %rax
# push the expression result
push %rax
# save the return expression into %rax per the abi
pop %rax
pop %rbx
mov %rbp, %rsp
pop %rbp
ret
.text
.globl main
.type main, @function
main:
# stack space for argc and argv
# emit main's prologue
push %rbp
mov %rsp, %rbp
sub $32, %rsp
push %rbx
# move argc and argv from parameter registers to the stack
mov %rdi, -8(%rbp)
mov %rsi, -16(%rbp)
# generate code for the body
# generate code for the return expression
# pass parameters either in registers or in stack
# evaluate a parameter
mov $1, %rax
push %rax
# evaluate a parameter
mov $3, %rax
push %rax
# move a parameter to a register
pop %rsi
# move a parameter to a register
pop %rdi
# call the function
call f
# restore the stack afterwards
# push the return value
push %rax
# save the return expression into %rax per the abi
pop %rax
# emit main's epilogue
pop %rbx
mov %rbp, %rsp
pop %rbp
ret
showing difference between att and intel assembly syntax
gcc --masm=intel -S abi.c
What about local variables, malloc'ed data?
- Local variables and heap-allocated variables are stored in memory allocated at runtime
- Running program (process) works with the OS to be allocated memory as needed at load and runtime
Function semantics
What are functions in programming languages?
Function abstraction: encapsulate a computation
- Defined by name (usually) and its input/output
- User-defined extension of the language
- Lots of uses: abstraction, reuse, organization, interfaces, and more
- Higher-order functions can take functions as inputs
- Lambda functions allow runtime creation of anonymous functions
How do functions work?
As distinct from mere branching
caller/callee
factorial illustrates the difference between branching vs. functions and local variables
- factorial
if you branch and modify updated x, would overwrite caller's data
int factorial (int x) { if (x <= 0) { return 1; } else { int y = x; x = x - 1; return factorial(x) * y; } } factorial_10() { return 10 * factorial_9(); } factorial_9() { return 9 * factorial_8(*); } factorial_0() { return 1; }
functions preserve state of the local variables
- Caller transfers control to callee function
- Caller provides input values
- Callee provides output value(s)
- Execution resumes in caller once callee is finished
Function calls "freeze" state of caller
How would you implement this with just assembly?
- Save state on stack
- Unconditional branch
- Save return value
- Another branch to go back to where we left off
Alternatives:
- Allocate state statically
- Use the heap
"Nested" function calls freeze state of many callees
- (Diagram)
f(a) {
return g(a) + 1;
}
g(b) {
return b * 2;
}
f(2)
stack layout:
- push parameter
- push return address
- push locals
stack frames
- callee points to previous stack frame (previous base pointer)
Can think of recursive functions as invokes a fresh instance of the function, rather than calling itself.
Function implementation
Stack frame (or activation record)
- Holds all information needed to "freeze" state of function
- Parameters and local variables
- Return address
- Caller's stack frame (nested calls)
Parameter passing
- Registers and/or stack
- Registers are faster, but limited in number
- May need to save them before making call
Application binary interface (ABI)
- Calling conventions and stack frame layout
- How to pass parameters
- Layout of data in the stack frame
- How to return values
- Caller and callee responsbilities
- Architecture- and OS-dependent
Note that parameter passing is done through registers for the first 6 parameters, then on the stack as needed.
More resources on the ABI and calling conventions
https://wiki.osdev.org/Calling_Conventions
https://eli.thegreenplace.net/2011/09/06/stack-frame-layout-on-x86-64/
https://en.wikipedia.org/wiki/X86_calling_conventions#Register_preservation
https://stackoverflow.com/questions/1658294/whats-the-purpose-of-the-lea-instruction
https://www.fireeye.com/blog/threat-research/2008/03/instruction-poi.html
Intel x86-64 support for functions
%rbp- base pointer points to the current function's stack frame%rsp- stack pointer points to the top of the stackpush/pop- push to and pop from the stack (move data and update%rsp)call- saves next instruction address (%rip) onto stack and branches to function's addressret- pops the caller's next instruction address and branches to it
Recall that "points to" just means that the register holds an address
Writing and calling ABI-compatible functions
- Function definition
- Prologue
- Epilogue
- Function call
- Parameter passing
- Return value
- Stack frame layout on x86 64
- (Demo)
Recall that compiler is printing out instructions that will implement the stack at runtime, not actually creating the stack while compiling.
# https://github.com/longld/peda # for C compile with -g for debug symbols # run gdb gdb example b main # break at main si # step instruction, assembly instructions (intead of code) info file # get address of rodata x/8xb 0x0000555555556000 # print memory, 8 he(x) (b)ytes x/i addr # print as instruction # dump symtab objdump -s test
gdb resources:
https://sourceware.org/gdb/onlinedocs/gdb/Memory.html
https://sourceware.org/gdb/onlinedocs/gdb/Registers.html#Registers
https://visualgdb.com/gdbreference/commands/set_disassembly-flavor
http://dbp-consulting.com/tutorials/debugging/basicAsmDebuggingGDB.html
https://github.com/longld/peda
https://sourceware.org/gdb/onlinedocs/gdb/Auto-Display.html#Auto-Display https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html https://sourceware.org/binutils/docs-2.16/as/index.html https://sourceware.org/binutils/docs/as/i386_002dMemory.html
Implementing functions in SimpleC
Recall: compiler is translating (not executing) the function
- Need to print out (emit) equivalent assembly
- Retrieve name, parameters from AST
- Type-checker provides function type guarantees
Generate while walking the tree
- (Diagram)
Implement by emitting assembly "templates" from the compiler
- (Coding demo)
codegen_main
static void codegen_main(T_main main) {
// create a new scope
current_offset_scope = create_offset_scope(NULL);
// emit the pseudo ops for the function definition
fprintf(codegenout, ".text\n");
fprintf(codegenout, ".globl %s\n", "main");
fprintf(codegenout, ".type %s, @function\n", "main");
// emit a label for the function
fprintf(codegenout, "%s:\n", "main");
// add local declarations to the scope
codegen_decllist(main->decllist);
COMMENT("stack space for argc and argv");
insert_offset(current_offset_scope, "argc", 8); // int argc
insert_offset(current_offset_scope, "argv", 8); // char **argv
COMMENT("emit main's prologue");
emit_prologue(current_offset_scope->stack_size);
COMMENT("move argc and argv from parameter registers to the stack");
int offset;
offset = lookup_offset_in_scope(current_offset_scope, "argc");
MOV_TO_OFFSET("%rdi", offset);
offset = lookup_offset_in_scope(current_offset_scope, "argv");
MOV_TO_OFFSET("%rsi", offset);
COMMENT("generate code for the body");
codegen_stmtlist(main->stmtlist);
COMMENT("generate code for the return expression");
codegen_expr(main->returnexpr);
COMMENT("save the return expression into %rax per the abi");
POP("%rax");
COMMENT("emit main's epilogue");
emit_epilogue();
// exit the scope
current_offset_scope = destroy_offset_scope(current_offset_scope);
}
gcc -g example.s to turn on debugging symbols
b main # break at main si # step instruction, assembly instructions (intead of code) info file # get address of rodata x/8xb 0x0000555555556000 # print memory, 8 he(x) (b)ytes x/i addr # print as instruction objdump -s test
Assembly language resources
https://docs.oracle.com/cd/E19253-01/817-5477/817-5477.pdf
https://csiflabs.cs.ucdavis.edu/~ssdavis/50/att-syntax.htm
https://sourceware.org/binutils/docs-2.16/as/index.html
https://www.imperialviolet.org/2017/01/18/cfi.html
https://www.felixcloutier.com/x86/
https://www2.cs.sfu.ca/CourseCentral/295/alavergn/Resources/Table%20of%20x86-64%20Registers.html
https://www.cs.virginia.edu/~evans/cs216/guides/x86.html
https://docs.oracle.com/cd/E19455-01/806-3773/instructionset-44/index.html
https://en.wikibooks.org/wiki/X86_Assembly/Shift_and_Rotate
https://stackoverflow.com/questions/19853012/intel-based-assembly-language-idiv