COP 3502 Study Group Sheet: AVL Trees, Tries

Directions: Work together as a group to try to solve these problems. Talk through issues and
see if you can convince yourselves of the right path to move forward.

1) Show the result of inserting the following items into an initially empty AVL Tree:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2) Show the result of deleting 10 from the AVL Tree shown below:

20
/ \
10 30
\ / \
15 25 45
\
27

3) Edit the function insert in the file in this link:

www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/sampleprogs/mytrie.c

to adapt to this struct:

struct trie {
int isWord;
int sumWords;
struct trie* next[26];

}i

where sumWords will store the total number of valid words that are stored at or below that
particular node in the trie. (For example, in a trie with two words: "cat" and “cab", the node storing
the 'c’ and 'a’ would store 2 for sumWords while the nodes storing the 't" and 'b" will store 1 for
sumWords.


http://www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/sampleprogs/mytrie.c

4) Write a function that takes in a pointer to the root node of a trie (guaranteed not to be NULL)
and prints out each word in the trie. The function should also take in a string that stores the current
answer built up, as well as the current depth in the trie. Here is the function prototype:

void printRec (struct trie* root, char* word, int k);
Here is the wrapper function:
void print(struct trie* root) {
char* word = malloc(sizeof (char)*1000000);
word[0] = '"\O';
printRec (root, word, O0);
free (word);

}

We assume all words in the trie are less than 999,999 characters!



