
COP 3502 Study Group Sheet: AVL Trees, Tries Solution

1) Show the result of inserting the following items into an initially empty AVL Tree:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Here is the status of the tree after each insertion

1 1 2 2 2 4 4 4

 \ / \ / \ / \ / \ / \ / \

 2 1 3 1 3 1 4 2 5 2 6 2 6

 \ / \ / \ \ / \ / \ / \ / \

 4 3 5 1 3 6 1 3 5 7 1 3 5 7

 \

 8

 4 4

 / \ / \

 2 6 2 8

 / \ / \ / \ / \

 1 3 5 8 1 3 6 9

 / \ / \ \

 7 9 5 7 10

2) Show the result of deleting 10 from the AVL Tree shown below:

 20

 / \

 10 30

 \ / \

 15 25 45

 \

 27

 25

 / \

 20 30

 / / \

 15 27 45

Deleting 10 forces the 15 to be the child of 20, which then forces a rebalance at 20, putting 25 at

the root.

3) Edit the function insert in the file in this link:

www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/sampleprogs/mytrie.c

to adapt to this struct:

struct trie {

 int isWord;

 int sumWords;

 struct trie* next[26];

};

where sumWords will store the total number of valid words that are stored at or below that

particular node in the trie. (For example, in a trie with two words: "cat" and "cab", the node storing

the 'c' and 'a' would store 2 for sumWords while the nodes storing the 't' and 'b' will store 1 for

sumWords.

void insert(TrieNode* tree, char word[], int k, int wordlen) {

 tree->numWords++;

 if (k == wordlen) {

 tree->flag = 1;

 return;

 }

 int nextIndex = word[k] - 'a';

 if (tree->children[nextIndex] == NULL)

 tree->children[nextIndex] = init();

 insert(tree->children[nextIndex], word, k+1, wordlen);

}

Note: only the line in bold has to be added to the original insert function.

http://www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/sampleprogs/mytrie.c

4) Write a function that takes in a pointer to the root node of a trie (guaranteed not to be NULL)

and prints out each word in the trie. The function should also take in a string that stores the current

answer built up, as well as the current depth in the trie. Here is the function prototype:

void printRec(struct trie* root, char* word, int k);

Here is the wrapper function:

void print(struct trie* root) {

 char* word = malloc(sizeof(char)*1000000);

 word[0] = '\0';

 printRec(root, word, 0);

 free(word);

}

We assume all words in the trie are less than 999,999 characters!

void printRec(struct trie* root, char* word, int k) {

 if (root == NULL) return;

 if (root->isWord) {

 word[k] = '\0';

 printf("%s\n", word);

 }

 for (int i=0; i<26; i++) {

 word[k] = (char)('a'+i);

 printRec(root->next[i], word, k+1);

 }

}

Note: This assumes the use of the struct from the file mytrie.c.

