
Some Math (Number Theory) 

 

I. GCD and LCM 

 

The greatest common divisor of two positive integers is the largest number that divides 

evenly into both. The least common multiple of two positive integers is the smallest 

number such that both of the integers divide evenly into it. 

 

If we think about finding the gcd of two values, a and b, imagine laying out two sticks of 

lengths a and b, one below the other, lined up on the left end: 

 

_________________________________________________________ (a) 

________________ (b) 

 

For a number to divide into both and and b evenly, we’d have to “chop” both sticks into 

equal segments of length d. If b is fairly short, we can repeat b a few times in the 

drawing: 

 

_________________________________________________________ (a) 

_______________|_______________|_______________|___________ (3b + r) 

            b                             b                               b                     r 

 

Our cut lines will go every d units and they’ll cut exactly at each of the boundaries of the 

three b sticks. Since the last “cut” would have to end at a, then it must also end at the 

segment labeled r. So, if d divides into a, and d divides into b, then what the drawing 

above infers is that d must also divide into r. Essentially, this gives us the equation: 

 

gcd(a, b) = gcd(b, a%b), so long as a is not divisible by b. (Namely, that leftover piece 

isn’t length 0.) 

 

If the leftover piece is length 0, then smaller number is the gcd. With this in mind, we can 

code a GCD method 

 

Here is a recursive solution (Euclid's Algorithm) to determine the gcd of two values: 

 
public static long gcd(long a, long b) { 

    return b == 0 ? a : gcd(b, a%b); 

} 

 

The least common multiple of two integers is smallest number that both numbers divide 

into evenly. We won’t provide the proof here, but the least common multiple of two 

integers a and b is always their product divided by their gcd. Thus, here is the lcm code: 

 
public static long lcm(long a, long b) { 

    return a/gcd(a,b)*b; 

} 

 



In many subproblems that arise in competitive programming, it’s useful to calculate the 

gcd or lcm of two integers (or more). (We can do more by calling the function that takes 

2 values in multiple times. In essence, gcd(a,b,c) = gcd(gcd(a, b), c). Same for lcm. 

 

II. Prime Testing, Prime Sieve, Prime Factorization 

 

A prime number is one that is only divisible by one and itself. If we are testing a single 

number of primality, we do trial division until the square root of the number. To see this, 

note that if n = ab, where a > 1 and b > 1, at least one of the two is less than or equal to 

the square root. If both were greater, than the product of ab and would greater than 

√𝑛√𝑛 = 𝑛, but it would be impossible for n to be greater than n. Thus, it follows if n has 

a non-trivial divisor, then it must have at least one non-trivial divisor less than or equal to 

the square root of n. Here is a function that performs this task: 

 
 public static boolean isPrime(int n) { 

   

  // We can stop at the square root...we avoid ints. 

  for (int i=2; i*i<=n; i++) 

    

   // Not prime... 

   if (n%i == 0) 

    return false; 

    

  // We are good if we get here. 

  return true; 

 } 

 

 

If we want to generate a list of all primes from 2 to n, we can use the Sieve of 

Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes). It works as follows: 

 

1) Write down all the numbers from 2 to n. 

2) Go through each number, in order. 

3) For each of these, if it’s not crossed off, circle it.  

4) Then, cross off each multiple of that number. Thus, when we circle 2 at the beginning 

of the algorithm, then cross off 4, 6, 8, 10, and so forth, until we get to the last even 

number less than or equal to n. 

 

The numbers not crossed off at the end of these (the circled ones) are all the primes in the 

range. 

 

As previously mentioned, we can technically stop our outer loop when we get to the 

square root of the number we are checking because any non-prime has at least one non-

trivial divisor less than or equal to its square root. 

 

  



If a number is already crossed off, there is no need to cross off its multiples. For example, 

when we get to 6, all of its multiples were crossed off when we circled 2, so there’s no 

need to cross them off again. Can you think about what to edit in the code above to skip 

these unnecessary loop iterations?  

 

After implementing the prime sieve, we are left with a boolean array such that isP[i] is set 

to true if and only if i is prime. For some questions, this formation of the data is good 

enough to solve problems. For other problems, it's necessary to have a list of integers (or 

an array) with the prime numbers in successive order. 

 

Here is a function that implements a basic prime sieve for all primes upto n and returns 

an ArrayList which stores the primes in order. 

 
 public static ArrayList<Integer> pList(int n) { 

   

  // Assume everything is prime at first. 

  boolean[] isP = new boolean[n+1]; 

  Arrays.fill(isP, true); 

   

  // Go through each number. 

  for (int i=2; i*i<=n; i++) 

    

   // Cross off multiples of i. (2i, 3i, etc.) 

   for (int j=2*i; j<=n; j+=i) 

    isP[j] = false; 

    

  // Copy over all primes into list. 

  ArrayList<Integer> list = new ArrayList<Integer>(); 

  for (int i=2; i<=n; i++) 

   if (isP[i]) 

    list.add(i); 

    

  return list; 

 } 

 

 

Once we can check for primality, we can also calculate the prime factorization of an 

integer by repeatedly dividing out prime factors until the number left is prime. We’ll 

leave this as an exercise for you to do. 

  



Cumulative Frequency Array: For Range Sum Queries 

 

Imagine the problem of having a list of numbers and needing to calculate the sum of any 

contiguous range of those numbers. For example, if the array stored: 

 

Index 0 1 2 3 4 5 6 7 8 

Value 3 12 6 9 17 4 3 2 19 

 

and we were asked to find the sum of the values stored from index 2 to index 7, we could 

just add 6 + 9 + 17 + 4 + 3 + 2  = 41. 

 

But…this is rather inefficient, especially for queries on large ranges!!! 

 

Another way to store this same information is to store in a particular index the sum of the 

values upto that index in the original list. This information is typically known as 

cumulative frequency of the list. The corresponding cumulative frequency array for the 

list shown above is: 

  

Index 0 1 2 3 4 5 6 7 8 

Value 3 15 21 30 47 51 54 56 75 

 

Now, if we want to know the sum of the values in the original array from index 2 to index 

7, we take the value in index 7 of this array, 56, and subtract from it the value in index 1, 

15, to get 56 – 15 = 41. 

 

Basically, what we’re doing is as follows (assume the original array is called a): 

 

(a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7]) – (a[0] + a[1]) = 

 

a[2] + a[3] + a[4] + a[5] + a[6] + a[7] 

 

In this manner, we can get the sum of any contiguous array by subtracting two values 

from our cumulative frequency array. Our special case is when the low bound is index 0, 

and then we don’t subtract anything. Another way to handle this special case is to add an 

extra array index on the left: 

 

Index 0 1 2 3 4 5 6 7 8 9 

Value 0 3 15 21 30 47 51 54 56 75 

 

In this situation, all of our array indexes are shifted over by 1, but an original range 

starting at index 0 can be handled without a special case. Either method can be used to 

handle ranges starting at the beginning. 

 

Here is some Java code that takes in an array and returns the cumulative frequency 

version of the array without changing the original: 

 



 public static int[] makeCF(int[] array) { 

   

  // Store here. 

  int[] cf = new int[array.length+1]; 

   

  // Just add this value to the previous total. 

  for (int i=1; i<cf.length; i++) 

   cf[i] = cf[i-1] + array[i-1]; 

   

  // Ta da! 

  return cf; 

   

 } 

 

Also, if we just wanted to overwrite the original array (with a slight different 

interpretation where index 0 of the cumulative frequency array stores the sum upto index 

0 in the original array, then we could do): 

 
for (int i=1; i<array.length; i++) 

    array[i] += array[i-1]; 

 

 

So, if the before picture of array was: 

 

3 2 8 6 5 1 

 

The after picture would be: 

 

3 5 13 19 24 25 

 

The method, given the first array would produce this one: 

 

0 3 5 13 19 24 25 

 

  



Maximum Contiguous Subsequence Sum 

 

Maximum Contiguous Subsequence Sum:  given (a possibly negative) integers A1, A2, …, 

An, find (and identify the sequence corresponding to) the maximum value of  
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For the degenerate case when all of the integers are negative, the maximum contiguous 

subsequence sum is zero. 

 

Examples:   

 

If input is: {-2, 11, -4, 13, -5, 2}.  Then the output is: 20. 

 

If the input is {1, -3, 4, -2, -1, 6}.  Then the output is 7. 

 

In the degenerative case, since the sum is defined as zero, the subsequence is an empty 

string.  An empty subsequence is contiguous and clearly, 0 > any negative number, so 

zero is the maximum contiguous subseqeunce sum. 

 

The brute force solution tries all possible subsequences (there are 
𝑛(𝑛−1)

2
 of these), and 

adds up the numbers in each of these sequences. Many of these sequences have O(n) 

values in them, so if we add up all the numbers in each contiguous subsequence, our 

algorithm would take O(n3) time. But, if we store a cumulative frequency array first, 

before processing the data, we can reduce the run time of this brute force solution to 

O(n2) time. 

 

Alternatively, we can also achieve an O(n2)  by realizing that if we have calculated the 

sum of the contiguous subsequence a[i..j] it only takes us one more step to calculate the 

sum of the contiguous subsequence a[i..j+1]. Here is the corresponding code: 

 
public static int MCSS(int [] a) { 

     int max = 0, sum = 0, start = 0, end = 0; 

     // Try all possible values of start and end indexes for the sum. 

     for (i = 0; i < a.length; i++) { 

          sum = 0; 

          for (j = i; j < a.length; j++) { 

               sum += a[j]; // No need to re-add all values. 

               if (sum > max) { 

                   max = sum; 

                   start = i; // Although method doesn't return these 

                   end = j;  // they can be computed. 

               } 

          }       

     } 

     return max; 

} 



MCSS Problem: O(n) Algorithm 

To further streamline this algorithm from a quadratic one to a linear one will require the 

removal of yet another loop.  Getting rid of another loop will not be as simple as was the 

first loop removal.  The problem with the quadratic algorithm is that it is still an 

exhaustive search, we’ve simply reduced the cost of computing  the last subsequence 

down to a constant time (O(1)) compared with the linear time (O(N)) for this calculation 

in the cubic algorithm.  The only way to obtain a subquadratic bound for this algorithm is 

to narrow the search space by eliminating from consideration a large number of 

subsequences that cannot possibly affect the maximum value. 

 

How to eliminate subsequences from consideration 

 

i                                    j   j+1                              q 

A             < 0 B           Sj+1, q 

C   < Sj+1, q 

 

If A < 0 then C < B  

If 
0
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, and if q > j, then Ai…Aq is not the MCSS! 

 

Basically if you take the sum from Ai to Aq and get rid of the first terms from  Ai to Aj 

your sum increases!!! Thus, in this situation the sum from Aj+1 to Aq must be greater than 

the sum from Ai to Aq.  So, no subsequence that starts from index i and ends after index j 

has to be considered. 

So – if we test for sum < 0 and it is – then we can break out of the inner loop.  However, 

this is not sufficient for reducing the running time below quadratic! 

 

Now, using the fact above and one more observation, we can create a O(n) algorithm to 

solve the problem. 

If we start computing sums 
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, etc. until we find the first value j such 

that 
0

=
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, then immediately we know that either 

 

1) The MCSS is contained entirely in between Ai to Aj-1  OR 

2) The MCSS starts before Ai or after Aj. 

 

From this, we can also deduce that unless there exists a subsequence that starts at the 

beginning that is negative, the MCSS MUST start at the beginning. If it does not start at 



the beginning, then it MUST start after the point at which the sum from the beginning to 

a certain point is negative. 

 

Using this idea, we can solve the problem by automatically setting our sum to 0 and our 

potential new starting point to the position right after the running sum fell below 0. 

 

Here is the code: 

 
public static int MCSS(int [] a) { 

 

     int max = 0, sum = 0, start = 0, end = 0, i=0; 

   

     // Cycle through all possible end indexes. 

     for (j = 0; j < a.length; j++) { 

         

          sum += a[j]; // No need to re-add all values. 

          if (sum > max) { 

              max = sum; 

              start = i; // Although method doesn't return these 

              end = j;  // they can be computed. 

          } 

          else if (sum < 0) { 

               i = j+1; // Only possible MCSSs start with an index >j. 

               sum = 0; // Reset running sum. 

          }       

     } 

     return max; 

} 

 

MCSS Linear Algorithm Clarification 

Whenever a subsequence is encountered which has a negative sum – the next 

subsequence to examine can begin after the end of the subsequence which produced the 

negative sum.  In other words, there is no starting point in that subsequence which will 

generate a positive sum and thus, they can all be ignored. To illustrate this, consider the 

example with the values 

 

5, 7, -3, 1, -11, 8, 12 

 

You'll notice that the sums 5, 5+7, 5+7+(-3) and 5+7+(-3)+1       are positive, but 

5+7+(3)+1+(-11) is negative. 

 

It must be the case that all subsequences that start with a value in between the 5 and -11 

and end with the -11 have a negative sum. Consider the following sums: 

 

7+(-3)+1+(-11)  (-3)+1+(-11)  1+(-11)  (-11) 

 

Notice that if any of these were positive, then the subsequence starting at 5 and ending at 

-11 would have to be also. (Because all we have done is stripped the initial positive 

subsequence starting at 5 in the subsequences above.) Since ALL of these are negative, it 



follows that NOW MCSS could start at any value in between 5 and -11 that has not been 

computed. 

 

Thus, it is perfectly fine, at this stage, to only consider sequences starting at 8 to compare 

to the previous maximum sequence of 5, 7, -3, and 1. 

 


