Junior Knights

Python I - Week 9

String Review

Agenda String Methods

Lists

String Review

Strings in Python are surrounded by either single quotation marks ¥ ’ or double quotation
marks » ”
- ‘hello’ isthe sameas “hello”

You can use quotes inside a string, as long as they don’t match the quotes surrounding the

string:
- print(“It’s alright”)
- print(“He 1is called ‘Johnny’”) print (‘He 1is called
“Johnny”’)

You can assign a multiline string to a variable by using three double quotes or single quotes:
- a = ““This 1is a
multiline string.”””

Concatenate Strings: 2 = "Hello"
= a = "Hello" b = "World"
b = "World" print(a + b)

print(a + " " + b)

String Review

Strings are Arrays, which means square
brackets can be used to access elements
of the string

Python does not have a character data
type, a single character is a string with a
length 1

Getting length of a string: 1en ()
Determines if a certain phrase or character

is present in a string using keyword in
and returns a boolean

Example 1
a = “Hello, World!”

print (a[l])
Output?

Example 2:
a = “Hello!”

print (len(a))
Output?

Example 3:
a = “Hello, World!”

print (“Hello” in a)

Output?

Slicing Strings

- Slicing returns a range of characters. Stop indexes are not inclusive.

T N

Slicing from a start to a stop a[start:stop] s = "Hello, World!"
print(s[7:12])

Slicing from the start: a[:stop] s = "Hello, World!"
print(s[:5])

Slicing to the end: a[start:] s = "Hello, World!"
print(s[7:])

Negative indexing starts slice | a[-start:-end] | s = "Hello, World!"
from end print(s[-6:-1])

Formatting Strings

Ways to print a string:

age = 36

print ("I am " + age)

Modifying with decimals

price = 50

print (f"The price is ${price:.2f}")

age = 36
print (f"I am {age}")

\\ Backslash
\n New Line

\t Tab

\b Backspace

String Methods

- Python has built-in string functions that don’t require imports.

i e

.upper () Returns string in upper case

.lower () Returns string in lower case

.strip() Removes whitespace from beginning or end

.replace () Replaces a string with another string

.split() Splits string into substrings if it finds instances
of the separator

.find() / .index() Searches for value and returns where it was
found

Quick Practice

1. Convert the following string to both uppercase and lowercase and print the results:
a. text = “Python is fun!”
2. Remove the whitespace from the following string:
a. text =" Hello, World! ”
3. Replace “apples” in the following string with “bananas”:
a. text = “I love apples!”
4. Splitthe sentence into a list of words and print the result:
a. text = “Python is my favorite language”
5. Find and print the index of the word “fox":

a. text = “The quick brown fox jumps over the lazy dog”

Live
Coding

List Review

- Lists are used to store multiple items in a single variable. Lists are indexed, allow duplicate values,
and are changeable. They can contain any data type and can mix data types

- Ways tocreate alist

- Standard:
- my list = [1, 2, 3, 4, 5]

- Using list() constructor. Useful for converting from tuples, sets, or strings:
- my list = list((1, 2, 3, 4, 5))
- my list = list(range(5))
- my list = list(“hello”)

- Using list comprehensions - creating a list from an expression:
- my list = [x*2 for x in range(5)]

- Using .split() on a string
- my list = “Junior Knights”.split()

- Using * for repetition
- my list = [0] * 5

List Review

Lists are used to store multiple items in a single variable. Lists are indexed, allow duplicate values,
and are changeable. They can contain any data type and can mix data types

Ways to create a list

- Standard:
- my list = [1, 2, 3, 4, 5] # [1, 2, 3,
4, 5]
- Using list() constructor. Useful for converting from tuples, sets, or strings:
- my list = list((1, 2, 3, 4, 5)) # [1, 2, 3, 4, 5]
- my list = list(range(5)) # [0, 1, 2,
3, 4]
- my list = list(“hello”) # [‘h',

\el , \ll , \ll , \ol]
- Using list comprehensions - creating a list from an expression:
- my list = [x*2 for x in range(5)] # [0, 2, 4, 6, 8]
- Using .split() on a string

- mer 19+ = NTiamaAar Frna~c~h+Eae” anla4+1/7) H$ T VN Tiama A/

Accessing List Items

- Lists are accessed by using indexes, where the first element is [0]
- my list = [1, 2, 3, 4, 5]
- print(my list[1])
- Accessing lists with negative indexing starts from the end:
- print(my list[-1])
- print(my list[-2])
- Slicing to get a range of indexes, stop is not inclusive
- print(my list[1:3])
- Checking if an item exists
- print(0 in my list)

Accessing List Items

Lists are accessed by using indexes, where the first element is [0]
- my list = [1, 2, 3, 4, 5]

print(my list[1]) # Output = 2
Accessing lists with negative indexing starts from the end:
- print(my list[-1]) # Output = 5
- print(my list[-2]) # Output = 4
Slicing to get a range of indexes, stop is not inclusive
- print(my_ list[1:3]) # Output = [2, 3]

Checking if an item exists

- print(0 in my list) # Output = False

Changing List Items

- Refer to the index number to change a specific item:
- my list = [1, 2, 3, 4, 5]
my list[l] = 7
- Change a range of item values using slicing. You can insert more or less items than you replace and
the remaining items will move accordingly:
- my list[1:3] = [71, 72]
- my list[1:3] = [45]
- Inserta new list item, without replacing the existing values, using insert() method
- my list.insert(2, 99)
- Add list items by using append()
- my list.append(17)
- Append elements from another list to current list using extend()
- other list = [4, 3, 2, 1]
my list.extend(other list)

Refer to the index number to change a specific item:
- my list = [1, 2, 3, 4, 5]
my list[1] = 7 # [1, 7, 3, 4, 5]
Change a range of item values using slicing. You can insert more or less items than you replace and
the remaining items will move accordingly:

- my list[1:3] = [71, 72] # [1, 71, 72, 4, 5]

- my list[1:3] = [45] # [1, 45, 4, 5]
Insert a new list item, without replacing the existing values, using insert() method

- my list.insert(2, 99) # [1, 2, 99, 3, 4, 5]
Add list items by using append()

- my list.append(17) # [1, 2, 3, 4, 5, 17]

Append elements from another list to current list using extend()
- other list = [4, 3, 2, 1]
my list.extend(other list) # [1, 2, 3, 4, 5, 4, 3, 2, 1]

Deleting List Items

- Use the remove() method to remove a specified item
- my list = [1, 2, 2, 3, 4, 5]
- my list.remove (4)
- If there are duplicates, remove() removes the first occurrence
- my list.remove (2)
- Remove specific index with pop() method
- my list.pop(0)
- del keyword can remove a specific index or an entire list
- del my list[O]
- del my list
- clear() empties the list without deleting it
- my list.clear()

Nested Lists

- Nested lists are used to store multiple groups of things in different categories.
- Ifalistis a box where you can store things, nested lists are smaller boxes within that box. Each
smaller box can have its own elements, which can even be yet another box.
- Defining a nested list:
- nested list = [
[, 2, 31, # First smaller box
[4, 5, 6], # Second smaller box
['a', 'b', 'ec'] # Third smaller box
]
- To access a nested list, you need to select the bigger box (outer list) then the smaller box (inner list)
- nested 1list[O0] # [1, 2, 3]
- nested list[1][2] # 6

List Methods

- Python has a set of built-in methods that you can use on lists.

T S

copy () Returns a copy of the list

reverse () Reverses the order of the list

sort () Sorts the list

Live
Coding

	Slide 1: Junior Knights Python I - Week 9
	Slide 2: Agenda
	Slide 3: String Review
	Slide 4: String Review
	Slide 5: Slicing Strings
	Slide 6: Formatting Strings
	Slide 7: String Methods
	Slide 8: Quick Practice
	Slide 9: Live Coding
	Slide 10: List Review
	Slide 11: List Review
	Slide 12: Accessing List Items
	Slide 13: Accessing List Items
	Slide 14: Changing List Items
	Slide 15: Changing & Adding List Items
	Slide 16: Deleting List Items
	Slide 17: Nested Lists
	Slide 18: List Methods
	Slide 19: Live Coding

