
Junior Knights
Python I - Week 7

Nested Loops

Agenda

Poll

Debugging

Random Numbers

Nested Loops

Poll: Which
Topic Would
You Like
More
Practice
With?

If/Else

While Loops

Python Operators

For Loops

Conditionals

https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal
https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal
https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal
https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal
https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal
https://www.mentimeter.com/app/presentation/al5xwndnaqgj8wx37qajp66xhnrr6stn/edit?source=share-invite-modal

If/Else

What is the bug in each of the examples below?

x = 5
if x = 5:

print("x is 5")

if True
print("Hello")

Nested loops=>

While Loops

x = 0
while x < 5:

print(x)

x = 10
while x < 5:

print(x)
x += 1

Nested loops=>

For Loops

for i in range(1, 10):
print(i)

n = 10
multiples = []
 for i in range(n):

if i % 3 == 0:
multiples.append(i)

print(multiples) # Expected output: [3, 6, 9]

Nested loops=>

Python Operators

The following code should extract the last digit of a number, but it's incorrect. Fix it.

n = 1234
last_digit = n // 10

print(last_digit) # Expected output: 4

The following code is supposed to return the number of full hours in a given number of minutes, but it's
producing incorrect results. Fix it.

minutes = 130
hours = minutes / 60

print(hours) # Expected output: 2

Nested loops=>

Conditionals

This code is supposed to print all numbers that are divisible by 3 and 5, but it is printing more numbers
than the expected. What is the issue?

n = 30
for i in range(1, n):

if i % 3 == 0 or i % 5 == 0:
print(i)

Nested loops=>

Random Numbers
- To use the random module, we must import it and seed it:

import random
random.seed()

random.randrange(start, stop, step)
- Returns a random number between the given range, can skip numbers using step, stop is not inclusive

random.randint(start, stop)
- Returns a random number between the given range, stop is inclusive

Nested Loops
- In any for/while loop, you can include loops within these loops
- Code reads top down; the first loop is entered first, runs as normal

- Whenever a second loop is encountered, that loop iterates until completion
- Once that loop is finished, the rest of the first loop statements are executed… and then it

loops again!
- After this, the process repeats, so the second loop will begin again, iterate until

completion

- Your second/inner loop will run to completion (loop several times) once per every iteration on the
first loop. So if your inner loop runs 3 times, and your outer loop runs 5, the statements within the
inner loop will execute 15 times!

Nested Loops
- Diagrams are very helpful when imagining such loops.

Nested Loops
- Such loops can be helpful when dealing with tables or matrices– if you need to perform operations

in a 2d space, you normally will be creating a nested loop.

- Some examples:
- Multiplication tables
- Tic-Tac-Toe games
- Clocks
- Coordinates
- … and so much more!

Syntax:

Outer_loop Expression:

 Inner_loop Expression:

 Statement inside inner_loop

 Statement inside Outer_loop

Nested Loops
- Here, we introduce a unique kind of for loop syntax. In addition to the for x in

range(a/a,b/a,b,c), when iterating through an array, you can also utilize the for x in y, where x
is the name for the variable that loops (can be any valid variable name), and y is the array you
would like to loop through. Where the range function is not inclusive at the endpoint, this will
span all elements of the array.

- What will be the output of this code?

a = [1, 2]
b = [4, 5]

for i in a:
 for j in b:

 print(i, j)

Live
Coding

And/Or Expressions

Boolean values
- A Boolean is a type of variable
- It can be one of two things: “True” or “False”
- Boolean logic is the foundation of what and/or statements operate under

- Booleans can be declared like any other variable:

x = 9
y = True

And/Or Expressions
- Or

- An or statement evaluates to “True” if either or both of its conditions are true
- Only evaluates to “False” when no conditions are met

- And
- An and statement only evaluates to “True” if both conditions are true
- Evaluates to “False” if one or both the statements are false

- Not
- If the statement the not encloses evaluates to “True”, the Not operator (!) changes it to “False”,

and vice versa

- The order of precedence from highest to lowest is Not, And, and then Ors. If you have a compound
and/or statement, it is good practice to always use parentheses to group statements properly.

And/Or Expressions

a = True
b = False
print(a and b)

x = False
y = True
print(x or y)

q = False
r = True
print(not q or r)

x = True
y = False
z = True
print((x and y) or (y or z))

a = False
b = False
c = True
 print(not (a and b) or (b and c))

Easy Medium Tricky

x = True
y = False
z = True
print(not ((x and y) or (not z and y)))

And/Or Expressions
The importance of parentheses:

a = True
b = False
c = True

print(a and b or c)

a = True
b = False
c = True
print(a and (b or c))

