
Tree-Based Group Diffie-Hellman (TGDH) Protocol 

 
Idea behind Group Keys 

In an organization, there may be several groups of people that should be privy to certain 

information, and these groups could be bigger than 2 people. Up until now, we have discussed two 

individuals communicating with either a shared secret key that no one else knows, but never 

entertained the idea of several people (more than 2) having a single shared secret key. Furthermore, 

organizations may have several groups with different levels of access/security. Thus, instead of 

just having one secret key shared with one other individuals, it makes sense for there to be several 

secret keys, one for each group an individual belongs to. 

 

With this added functionality comes added flexibility: 

 

1) How do we add someone to an existing group? 

 

2) What happens if someone has to leave a group? (Namely: we wouldn't want that person to 

continue to be able to read the group communications.) 

 

3) As these changes may update quite a few people, is there an efficient way so that we don't have 

to update too many keys whenever some change occurs to a group? 

 

General Idea Behind a Group Diffie-Hellman Key 

If there are three users, Alisha, Bennie and Calista with private keys a, b, and c, then gabc mod p 

can be their shared key. (Notice that it would still be okay in this situation if the shared key between 

Alisha and Bennie was gab mod p, the shared key between Alisha and Calista was gac mod p, and 

the shared key between Bennie and Calista was was gbc mod p. 

 

Use of a Binary Tree to implement Tree-Based Group Diffie-Hellman 

Imagine that the structure of the groups could be organized in a binary tree. All end users would 

be leaf nodes and the shared secret keys between groups would be stored in internal nodes. This 

idea is best understood with a diagram. The whole system uses a single public key prime, p and 

generator, g. Each user (leaf node) has its own secret key, ai. Each internal node, j, has two different 

keys associated with it: Kj, which represents the shared secret key between all users in the subtree 

of node j, and BKj, which represents the "blind key" for that node which will then get used to 

generate group keys for ancestor nodes. Let's look at a small picture of a system with four users: 

 

     (K0, BK0) 

    /   \ 

                 (K1, BK1)         (K2, BK2) 

   /                  \                      /               \ 

                                   a1        a2      a3               a4 

 

  



Let's see how each key and blind key gets calculated: 

 

𝐾1 = 𝑔𝑎1𝑎2  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾1 = 𝑔𝐾1 (𝑚𝑜𝑑 𝑝)  

𝐾2 = 𝑔𝑎3𝑎4  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾2 = 𝑔𝐾2  (𝑚𝑜𝑑 𝑝) 

𝐾0 = 𝑔𝐾1𝐾2  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾0 = 𝑔𝐾0  (𝑚𝑜𝑑 𝑝), notice that since this is the root node, BK0 

technically never gets used. 

 

Thus, K1 is the shared key for users with secret keys a1 and a2. 

K2 is the shared key for users with secret keys a3 and a4. 

K0 is the shared key for all four users. 

 

Note: We use the blind key as the piece of information that is publicly sent to the sibling node so 

that the new key for the parent node can be calculated. 

 

 

Adding a New User 

The system does not have to always be a perfect binary tree, Let's consider adding a new user with 

secret key a5. Here is how the tree structure could change in this case: 

 

 

     (K0, BK0) 

    /   \ 

                 (K1, BK1)         (K2, BK2) 

   /                  \                      /               \ 

                                   a1        a2     (K3, BK3)    a4 

                                                                           /          \ 

                                                                         na3         a5 

 

In this case, we just have to recalculate all keys up the ancestral path. The user with which we are 

splitting the new user will have to choose a new secret key, which is designated as na3. Here are 

the new calculations: 

 

𝐾3 = 𝑔𝑛𝑎3𝑎5  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾3 = 𝑔𝐾3  (𝑚𝑜𝑑 𝑝)  

𝐾2 = 𝑔𝐾3𝑎4  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾2 = 𝑔𝐾2  (𝑚𝑜𝑑 𝑝) 

𝐾0 = 𝑔𝐾1𝐾2  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾0 = 𝑔𝐾0  (𝑚𝑜𝑑 𝑝) 

 

Basically, the new user affects every ancestor key, thus, we just have to update, in order, from 

bottom to top of the tree, each ancestor's key and blind key, going up the tree. In practice, this is 

likely done via recursion and as the function calls pop off the stack, the new keys are calculated in 

this order. For large trees, if there are n users, the number of updates, so long as we keep the tree 

reasonably balanced will be O(lg n), since the average height of a randomly composed binary tree 

of n elements is O(lg n). 

 

 

 

 



Deleting a User 

Deleting is similar to insertion. When a member is deleted, then changes must be made up the 

ancestral path. Since each user is always a leaf node, the cases for delete are not as complicated as 

deletion from a regular binary search tree. Let's consider an example: 

 

     (K0, BK0) 

    /   \ 

                 (K1, BK1)         (K2, BK2) 

   /                  \                      /               \ 

                             (K3, BK3)       (K4, BK4)   (K5, BK5)    (K6, BK6) 

                               /         \               /       \          /        \         /        \ 

                    (K7, BK7)     a3           a4       a5       a6        a7     a8       a9 

                       /      \ 

                      a1     a2            

 

Let's say the user with secret key a7 leaves the group. This means that the node with K5 will 

disappear and be replaced by a6. But, because the groups have changed, we require that the user 

with secret key a6 change it to na6. Here is the new picture and the ensuing key changes: 

 

     (K0, BK0) 

    /   \ 

                 (K1, BK1)         (K2, BK2) 

   /                  \                      /               \ 

                             (K3, BK3)       (K4, BK4)       na6          (K6, BK6) 

                               /         \               /       \                             /        \ 

                    (K7, BK7)     a3           a4       a5                          a8       a9 

                       /      \ 

                      a1     a2            

 

𝐾2 = 𝑔𝐾6𝑛𝑎6  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾2 = 𝑔𝐾2  (𝑚𝑜𝑑 𝑝) 

𝐾0 = 𝑔𝐾1𝐾2  (𝑚𝑜𝑑 𝑝) → 𝐵𝐾0 = 𝑔𝐾0  (𝑚𝑜𝑑 𝑝) 

 

  



Small Example with Numbers 

For simplicity, let's use p = 29, and g = 2. Let's use the picture from our previous example: 

 

     (K0, BK0) 

    /   \ 

                 (K1, BK1)         (K2, BK2) 

   /                  \                      /               \ 

                             (K3, BK3)       (K4, BK4)   (K5, BK5)    (K6, BK6) 

                               /         \               /       \          /        \         /        \ 

                    (K7, BK7)     a3           a4       a5       a6        a7     a8       a9 

                       /      \ 

                      a1     a2            

 

Let's pick the following secret keys for each user: 

 

a1 = 23, a2 = 11, a3 = 17, a4 = 9, a5 = 16, a6 = 18, a7 = 24, a8 = 5, a9 = 9 

 

Here are the calculations for each of the keys and blind keys 

K7 = 223(11) mod 29 = 2 (note that 253 is equivalent to 1 mod 28…) 

BK7 = 22 mod 29 = 4 

 

K4 = 29(16) mod 29 = 16 

BK4 = 216 mod 29 = 25 

 

K5 = 218(24) mod 29 = 7 

BK5 = 27 mod 29 = 12 

 

K6 = 25(9) mod 29 = 21 

BK5 = 221 mod 29 =17 

 

K3 = (BK7)
a3 mod 29 = 417 mod 29 = 6 

     = g(K7a3) mod 29 = 22(17) mod 29 = 6, showing that we can calculate this 2 ways by hand. 

BK3 = 26 mod 29 = 6 (note this is a coincidence) 

 

K2 = (BK5)
K6 mod 29 = 1221 mod 29 = 12 

     = gK5K6 mod 29 = 27(21) mod 29 = 12 

BK2 = 212 mod 29 = 7 

 

K1 = (BK3)
K4 mod 29 = 616 mod 29 = 7 

     = gK3K4 mod 29 = 26(16) mod 29 = 7 

BK1 = 27 mod 29 = 12 

 

K0 = (BK1)
K2 mod p = 1212 mod 29 = 1  

 

As you can see with small numbers, lots of coincidences can happen, but hopefully this explains 

the process clearly. 


