Tree-Based Group Diffie-Hellman (TGDH) Protocol

Idea behind Group Keys

In an organization, there may be several groups of people that should be privy to certain
information, and these groups could be bigger than 2 people. Up until now, we have discussed two
individuals communicating with either a shared secret key that no one else knows, but never
entertained the idea of several people (more than 2) having a single shared secret key. Furthermore,
organizations may have several groups with different levels of access/security. Thus, instead of
just having one secret key shared with one other individuals, it makes sense for there to be several
secret keys, one for each group an individual belongs to.

With this added functionality comes added flexibility:
1) How do we add someone to an existing group?

2) What happens if someone has to leave a group? (Namely: we wouldn't want that person to
continue to be able to read the group communications.)

3) As these changes may update quite a few people, is there an efficient way so that we don't have
to update too many keys whenever some change occurs to a group?

General Idea Behind a Group Diffie-Hellman Key

If there are three users, Alisha, Bennie and Calista with private keys a, b, and ¢, then g®® mod p
can be their shared key. (Notice that it would still be okay in this situation if the shared key between
Alisha and Bennie was g®® mod p, the shared key between Alisha and Calista was g* mod p, and
the shared key between Bennie and Calista was was g° mod p.

Use of a Binary Tree to implement Tree-Based Group Diffie-Hellman

Imagine that the structure of the groups could be organized in a binary tree. All end users would
be leaf nodes and the shared secret keys between groups would be stored in internal nodes. This
idea is best understood with a diagram. The whole system uses a single public key prime, p and
generator, g. Each user (leaf node) has its own secret key, a;. Each internal node, j, has two different
keys associated with it: K;, which represents the shared secret key between all users in the subtree
of node j, and BKj, which represents the "blind key" for that node which will then get used to
generate group keys for ancestor nodes. Let's look at a small picture of a system with four users:

(Ko, BKo)
/ \
(K1, BKy) (K2, BK>)
/ \ / \
al a2 a3 a4



Let's see how each key and blind key gets calculated:

K, = g% (mod p) = BK, = g¥1 (mod p)

K, = g% (mod p) > BK, = g¥2 (mod p)

Ky, = g¥*2 (mod p) > BK, = g¥° (mod p), notice that since this is the root node, BKo
technically never gets used.

Thus, K; is the shared key for users with secret keys a; and a,.
K> is the shared key for users with secret keys as and as.
Ko is the shared key for all four users.

Note: We use the blind key as the piece of information that is publicly sent to the sibling node so
that the new key for the parent node can be calculated.

Adding a New User
The system does not have to always be a perfect binary tree, Let's consider adding a new user with
secret key as. Here is how the tree structure could change in this case:

(Ko, BKo)
/ \
(K1, BKy) (K2, BK>)
/ \ / \
aj a (K3, BK3) a4
/ \
nas as

In this case, we just have to recalculate all keys up the ancestral path. The user with which we are
splitting the new user will have to choose a new secret key, which is designated as nas. Here are
the new calculations:

K; = g"%% (mod p)> BK; = gK3 (mod p)
K, = g¥3% (mod p) = BK, = g*2 (mod p)
K, = g¥1%2 (mod p) > BK, = g*°o (mod p)

Basically, the new user affects every ancestor key, thus, we just have to update, in order, from
bottom to top of the tree, each ancestor's key and blind key, going up the tree. In practice, this is
likely done via recursion and as the function calls pop off the stack, the new keys are calculated in
this order. For large trees, if there are n users, the number of updates, so long as we keep the tree
reasonably balanced will be O(lg n), since the average height of a randomly composed binary tree
of n elements is O(Ig n).



Deleting a User

Deleting is similar to insertion. When a member is deleted, then changes must be made up the
ancestral path. Since each user is always a leaf node, the cases for delete are not as complicated as
deletion from a regular binary search tree. Let's consider an example:

(Ko, BKo)
/ \
(K1, BK1) (K2, BK>)
/ \ / \
(K3, BK3) (K4, BK4) (Ks, BKs) (Ks, BKs)
/ \ /N / \ / \
(K7, BK7) a3 a4 as a6 a7 ag a9
/A
al az

Let's say the user with secret key a; leaves the group. This means that the node with Ks will
disappear and be replaced by a¢. But, because the groups have changed, we require that the user
with secret key as change it to nas. Here is the new picture and the ensuing key changes:

(Ko, BKo)
/ \
(K1, BK)) (K2, BK2)
/ \ / \
(K}, BK3) (K4, BK4) nae (Kﬁ, BKé)
/ \ /N / \
(K7, BK7) a3 a4 as ag a9
/N
a1 a

K, = gXé" (mod p)~> BK, = g*2 (mod p)
K, = g51%2 (mod p) > BK, = g*°o (mod p)



Small Example with Numbers
For simplicity, let's use p =29, and g = 2. Let's use the picture from our previous example:

(Ko, BKo)
/ \
(K1, BK1) (K2, BK>)
/ \ / \
(K3, BK3) (K4, BK4) (Ks, BKs) (Ks, BKs)
/ \ /N / \ / \
(K7, BK7) a3 a4 as a6 a7 ag a9
/A
al a2

Let's pick the following secret keys for each user:
ar=23,x=11,a3=17,a4=9,as=16,a=18,a7=24,a3=5,a9=9
Here are the calculations for each of the keys and blind keys

K7 =23 mod 29 = 2 (note that 253 is equivalent to 1 mod 28...)
BK7 =22 mod 29 = 4

Ks=2°09 mod 29 =16
BK4=2'" mod 29 =25

Ks=28CY mod29=7
BKs=2"mod 29 =12

Ke= 2 mod 29 =21
BK;s =22 mod 29 =17

K3 = (BK7)®* mod 29 = 4!" mod 29 = 6
= g®733) mod 29 = 22" mod 29 = 6, showing that we can calculate this 2 ways by hand.
BK3 = 2° mod 29 = 6 (note this is a coincidence)

K> = (BK5)% mod 29 = 12%! mod 29 = 12
= g®%6 mod 29 = 27V mod 29 = 12
BK> =22 mod 29 =7

K; = (BK3)%* mod 29 = 6! mod 29 = 7
= g% mod 29 =269 mod 29 =7

BK;=2"mod 29 =12

Ko=(BK)*?* modp =122 mod 29 =1

As you can see with small numbers, lots of coincidences can happen, but hopefully this explains
the process clearly.



