Public Key Cryptography

Public Key cryptography: The basic idea is to do away with the necessity of a secure key exchange,
which is necessary for all private key encryption schemes. The idea is as follows:

1) Bob creates two keys, a public key, E and a private key D.

2) Bob posts the public key in a location that anyone can access.
The important thing here is that the knowledge of E does not compromise the value of D in any
way shape or form.

3) Now, anyone who wants to send a message to Bob encrypts it using the public key E.

4) Bob can now read the message using his private key D. However, since the value of E gives no
information as to the value to D, all others can not read the message.

The idea seems easy enough, but the difficulty is in finding some mathematical function to use in
this scheme such that the knowledge of E does not compromise the secrecy of D. Clearly in all the
other schemes we have seen, knowledge of the encrypting key all but completely gives away the
decrypting key.

One thing to note however is that if you use a system outlined above with nothing extra, although
Bob can decipher a message sent to him, he can not be sure of who the sender is, because the whole
public has the ability to encipher a message, so someone could easily indicate in their message that
they were someone else and Bob would not have any way of knowing. But, the person sending the
message can be confident that no one read can read the plaintext except for Bob, the only person
with the private key.

RSA Cryptosystem
Now, we are ready to look at the RSA algorithm:

1) Pick large primes p and g.
2) Compute n=pqg and ¢(n)=(p-1)(g-1)
3) Pick a value e such that gcd(e, ¢(n)) = 1. (Note that this is fairly easy to do by randomly picking
values e and testing them with Euclid’s algorithm until you find one that works.)
4) Compute d such that ed = 1 (mod ¢(n)). You are guaranteed to be able to do this by the extended
Euclidean algorithm.
5) Public keys : e, n
Private key : d, (n is also necessary for decryption, but is clearly public...)

Encryption function : Ene(X) = x° (mod n)
Decryption function : Dna(y) = y¢ (mod n)

Now, we must verify that this is a valid encryption scheme:



Dn.d(Ene(X)) = Dna(x®) = (x¥)¢ (mod n) = x4 (mod n)

Now we will invoke the given information about the product ed:

ed =1 (mod ¢(n)), thus, we can find an integer k such that ed = kp(n) + 1.
Now we have the following:

x% (mod n) = x*¢™*1 (mod n)
= x*¢Mx! (mod n)
= (x*™)kx (mod n)
= (1)*x (mod n), invoking Euler’s formula.
= x (mod n), proving that the encryption scheme is valid, assuming that
the gcd(x,n) = 1.

Since you are picking large primes the probability that gcd(x,n) =1 is quite high. (If you pick 20
digit primes for both p and g, the probability is roughly 1 — 10 that gcd(x,n) = 1.

In practice, one would have to have a reliable way to convert the data they wanted to send (maybe
a bitstring or some text) into a number less than n. An example of such a scheme would be treating
a block of letters (assume all lower case) as a number in base 26. For example, “break’ would
equal 1x26* + 17x26° + 4x262 + 0x26* + 10x26°, using ‘a’ =0, ‘b’ =1, ..., ‘2> = 25. It would be
natural to make the valid block size, k, where 26¥ is less than n but 26%*! is greater than n. Many
other schemes would work as well. But typically, the ciphertext is represented as integers instead
of being converted to letters.



