

Euler's Theorem (generalization of Fermat's)

Euler Phi Function

First, let's define the Euler ϕ (phi) function:

$\phi(n)$ = the number of integers in the set $\{1, 2, \dots, n-1\}$ that are relatively prime to n .

$\phi(p) = p - 1$, for all prime numbers

$\phi(pq) = (p-1)(q-1)$, where p and q are distinct primes. Here is a derivation of that result:

We want to count all values in the set $\{1, 2, 3, \dots, pq - 1\}$ that are relatively prime to pq . Instead, we could count all value in the set NOT relatively prime to pq . We can list these values:

$p, 2p, 3p, \dots, (q-1)p$

$q, 2q, 3q, \dots, (p-1)q$

Note that each of these values are distinct. To notice this, see that no number of the first row is divisible by q and no number on the second row is divisible by p . This ensures that there are no repeats on both rows. since p and q are relatively prime, in order for q to be a factor of a number on the first row, it would have to divide evenly into either $1, 2, 3, \dots, q-1$. But clearly, it does not. The same argument will show that none of the values on the second row are divisible by p .

Finally, we can count the number of values on this list. It's $(q-1) + (p-1) = p + q - 2$.

Now, in order to find $\phi(pq)$, we must subtract this value from $pq - 1$. So, we find:

$$\phi(pq) = (pq - 1) - (p + q - 2) = pq - p - q + 1 = (p - 1)(q - 1).$$

Now, let's try to derive a more general result to calculate the ϕ for all positive integers.

First, we will extend our formula $\phi(p) = p - 1$, for all prime numbers, to numbers of the form $\phi(p^n)$. This extension is rather simple because for a number to NOT be relatively prime to p^n , it must be divisible by p . Looking at the list: $1, 2, 3, \dots, p, \dots, p^{n-1}-1$, there are exactly $p^{n-1} - 1$ values on the list divisible by p . (These values are $p, 2p, 3p, \dots, (p^{n-2}-1)p$.) Thus, we find that $\phi(p^n) = p^n - 1 - (p^{n-1} - 1) = p^n - p^{n-1}$.

Next, we generalize the result $\phi(pq) = (p - 1)(q - 1) = \phi(p)\phi(q)$ for two primes p and q to any number that is the product of relative prime values, m and n . This extension will take a bit more work. We must count the number of values in the set $\{1, 2, 3, \dots, mn - 1\}$ that are relatively prime to mn . Let us write them out in a chart as follows:

1	2	3	4	...	m
$m+1$	$m+2$	$m+3$	$m+4$...	$2m$
...					
$(n-1)m+1$	$(n-1)m+2$	$(n-1)m+3$	$(n-1)m+4$		nm

We must "cancel out" any term in this grid that is NOT relatively prime to either m or n .

First, let's cancel out the terms NOT relatively prime to m. Quickly note that if some value r is NOT relatively prime to m, then $km+r$ is not either. Thus, if there is some value r in between 1 and m inclusive that shares a common factor with m, then EVERY value in its column shares a common factor with m. Thus, there will be $\phi(m)$ columns that are canceled out. The other columns are completely canceled out.

Now, consider the remaining columns. We need only to look for values that share a common factor with n in these columns. Each column takes the following form:

$$r, m+r, 2m+r, 3m+r, \dots, (n-1)m+r.$$

Now, we will prove that each of these numbers is distinct mod n. Assume to the contrary, that two values on the list are equivalent mod n. Let these two values be

$im+r$ and $jm+r$, for $0 \leq i < j < n$. Thus, we have:

$$im + r \equiv jm + r \pmod{n}$$

$$jm - im \equiv 0 \pmod{n}$$

$$m(j - i) \equiv 0 \pmod{n}$$

It follows that n divides evenly into $m(j - i)$. But, we are given that $\gcd(m, n) = 1$. This implies that $n \mid (j - i)$. But, this is impossible because $0 < j - i < n$. This is our contradiction. Thus, it follows that each of the n numbers on that list is not equivalent mod n. Thus, there is exactly 1 number for each residue class mod n in the list. It follows that EXACTLY $\phi(n)$ of these are divisible by n. Finally, if we take a look at the numbers not crossed out, there are exactly $\phi(m)\phi(n)$ of them. Here is a quick example with $m = 8$ and $n = 15$. All crossed out numbers are underlined. We have $\phi(8) = 4$ columns of numbers not crossed out.

1	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	7	<u>8</u>	In each column there are $\phi(15) = 8$ numbers not crossed out.
<u>9</u>	<u>10</u>	11	<u>12</u>	13	<u>14</u>	<u>15</u>	<u>16</u>	
17	<u>18</u>	19	<u>20</u>	<u>21</u>	<u>22</u>	23	<u>24</u>	
<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	29	<u>30</u>	31	<u>32</u>	
<u>33</u>	<u>34</u>	<u>35</u>	<u>36</u>	37	<u>38</u>	<u>39</u>	<u>40</u>	
41	<u>42</u>	43	<u>44</u>	<u>45</u>	<u>46</u>	47	<u>48</u>	
49	<u>50</u>	<u>51</u>	<u>52</u>	53	<u>54</u>	<u>55</u>	<u>56</u>	
<u>57</u>	<u>58</u>	59	<u>60</u>	61	<u>62</u>	<u>63</u>	<u>64</u>	
<u>65</u>	66	67	<u>68</u>	<u>69</u>	<u>70</u>	71	<u>72</u>	
73	<u>74</u>	<u>75</u>	<u>76</u>	77	<u>78</u>	79	<u>80</u>	
<u>81</u>	<u>82</u>	83	<u>84</u>	<u>85</u>	<u>86</u>	<u>87</u>	<u>88</u>	
89	<u>90</u>	91	<u>92</u>	<u>93</u>	<u>94</u>	<u>95</u>	<u>96</u>	
97	<u>98</u>	<u>99</u>	<u>100</u>	101	<u>102</u>	103	<u>104</u>	
<u>105</u>	<u>106</u>	107	<u>108</u>	109	<u>110</u>	<u>111</u>	<u>112</u>	
113	<u>114</u>	<u>115</u>	<u>116</u>	<u>117</u>	<u>118</u>	119	<u>120</u>	

Now, given these two results, we can derive a formula for $\phi(n)$ for any positive integer n. Given n's prime factorization, one can simply calculate the phi function of each prime factor separately and multiply these all together.

For example, $\phi(2^5 \times 3 \times 7^2) = \phi(2^5)\phi(3)\phi(7^2) = (2^5 - 2^4)(3 - 1)(7^2 - 7) = 16(2)(42) = 1344$.

Euler's Theorem

Euler's Theorem: If $\gcd(a, n) = 1$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Definition of a reduced residue system modulo n: A set of $\phi(n)$ numbers $r_1, r_2, r_3, \dots, r_{\phi(n)}$ such that $r_i \neq r_j$, for all $1 \leq i < j \leq \phi(n)$ with $\gcd(r_i, n) = 1$ for all $1 \leq i \leq \phi(n)$.

Theorem about reduced residue systems: If $r_1, r_2, r_3, \dots, r_{\phi(n)}$ is a reduced residue system modulo n , and $\gcd(a, n) = 1$, then $ar_1, ar_2, ar_3, \dots, ar_{\phi(n)}$ is ALSO a reduced residue system modulo n .

Proof: We need to prove two things in order to verify the theorem above:

- 1) $ar_i \neq ar_j$, for all $1 \leq i < j \leq \phi(n)$
- 2) $\gcd(ar_i, n) = 1$ for all $1 \leq i \leq \phi(n)$

Proof of 1:

Assume to the contrary that there exist distinct integers i and j such that $ar_i \equiv ar_j \pmod{n}$. We can deduce the following:

$$\begin{aligned} ar_i &\equiv ar_j \pmod{n} \\ (ar_i - ar_j) &\equiv 0 \pmod{n} \\ n &\mid (a(r_i - r_j)) \end{aligned}$$

We know that $\gcd(a, n) = 1$. Thus, based on a theorem proved earlier, it follows that $n \mid (r_i - r_j)$. But, this infers that $r_i \equiv r_j \pmod{n}$. This contradicts our premise that $r_1, r_2, r_3, \dots, r_{\phi(n)}$ is a reduced residue system modulo n . Thus, we can conclude that $ar_i \neq ar_j$, for all $1 \leq i < j \leq \phi(n)$.

Proof of 2:

Since $\gcd(a, n) = 1$ and $\gcd(r_i, n) = 1$, it follows that n shares no common factors with a or r_i . Thus, it shares no common factors with their product and we can conclude that $\gcd(ar_i, n) = 1$ for all $1 \leq i \leq \phi(n)$.

Now, we will use this theorem to prove Euler's theorem:

Let $r_1, r_2, r_3, \dots, r_{\phi(n)}$ be a reduced residue system modulo n , and $\gcd(a, n) = 1$. Then we have that $ar_1, ar_2, ar_3, \dots, ar_{\phi(n)}$ is a reduced residue system modulo n . Since both are reduced residue systems modulo n , we know that their products are equivalent mod n :

$$\prod_{i=1}^{\phi(n)} ar_i \equiv \prod_{i=1}^{\phi(n)} r_i \pmod{n}$$

$$\prod_{i=1}^{\phi(n)} ar_i - \prod_{i=1}^{\phi(n)} r_i \equiv 0 \pmod{n}$$

$$a^{\phi(n)} \prod_{i=1}^{\phi(n)} r_i - \prod_{i=1}^{\phi(n)} r_i \equiv 0 \pmod{n}$$

$$\left(\prod_{i=1}^{\phi(n)} r_i \right) (a^{\phi(n)} - 1) \equiv 0 \pmod{n}$$

Thus, we have that n divides this product. But, we know that $\gcd(r_i, n) = 1$ for each value of i. Thus the first large product of $\phi(n)$ terms is relatively prime to n. It follows that n divides the last factor:

$$n \mid (a^{\phi(n)} - 1)$$

$$a^{\phi(n)} \equiv 1 \pmod{n}, \text{ proving Euler's Theorem.}$$

Wilson's Theorem

The theorem follows rather simply from some of our following work:

$$(p - 1)! \equiv -1 \pmod{p} \text{ for all primes } p.$$

This result can be verified for $p = 2$. Now, let's consider all odd p . Since each value $1, 2, \dots, p - 1$ is relatively prime to p , each has an inverse mod p . We know that the inverse of 1 is 1 and the inverse of $p - 1$ is $p - 1$. But, for each other value on the list, its inverse is different than itself.

To see this, let's directly set up an equation for a value k that is its own inverse mod p :

$$k^2 \equiv 1 \pmod{p}$$

$$k^2 - 1 \equiv 0 \pmod{p}$$

$$(k - 1)(k + 1) \equiv 0 \pmod{p}$$

This implies that $p \mid (k - 1)$ or $p \mid (k + 1)$. These are exactly the two values we have written above as having self inverses.

Now, consider the product

$$1 \times 2 \times 3 \times 4 \dots \times (p - 1)$$

$$1 \times (p - 1) \times (2 \times 3 \times 4 \dots \times (p - 2))$$

Each of the terms in the second set of parentheses (there are an even number of them), have their inverses mod p in that set. We can pair up these values such that

$$1 \times (p - 1) \times (2 \times 3 \times 4 \dots \times (p - 2)) \equiv 1 \times (p - 1) \times 1 \times 1 \dots \times 1 \pmod{p}$$

$$\equiv (p - 1) \pmod{p}$$

$$\equiv -1 \pmod{p}$$