Euler’s Theorem (generalization of Fermat’s)

Euler Phi Function
First, let’s define the Euler ¢(phi) function:

d(n) = the number of integers in the set {1, 2, ..., n-1} that are relatively prime to n.
o(p) =p -1, for all prime numbers
¢(pq) = (p-1)(g-1), where p and q are distinct primes. Here is a derivation of that result:

We want to count all values in the set {1, 2, 3, ..., pq —1} that are relatively prime to pg.
Instead, we could count all value in the set NOT relatively prime to pg. We can list these values:

p! 2p! 3p! ey (q'l)p

a, 29, 39, ... (p-1)q

Note that each of these values are distinct. To notice this, see that no number of the first row is
divisible by g and no number on the second row is divisible by p. This ensures that there are no
repeats on both rows. since p and q are relatively prime, in order for g to be a factor of a number
on the first row, it would have to divide evenly into either 1, 2, 3, ... g-1. But clearly, it does not.
The same argument will show that none of the values on the second row are divisible by p.

Finally, we can count the number of values on this list. It’s (q-1) + (p-1) = p + q — 2.
Now, in order to find ¢(pq), we must subtract this value from pq -1 . So, we find:

o(pa)=(pg—-1)-(p+a-2)=pg-p-q+1=(p-1)(q-1).
Now, let’s try to derive a more general result to calculate the ¢ for all positive integers.

First, we will extend our formula ¢(p) = p -1, for all prime numbers, to numbers of the form ¢(p").
This extension is rather simple because for a number to NOT be relatively prime to p", it must be
divisible by p. Looking at the list: 1, 2, 3, ..., p, ..., p"™-1, there are exactly p"* — 1 values on the
list divisible by p. (These values are p, 2p, 3p, ..., (p"% — 1)p.) Thus, we find that ¢(p") = p" — 1 —

(P -1)=p"—p™.

Next, we generalize the result ¢(pq) = (p — 1)(q — 1) = ¢(p)d(q) for two primes p and q to any
number that is the product of relative prime values, m and n. This extension will take a bit more
work. We must count the number of values in the set {1, 2, 3, ..., mn — 1} that are relatively prime
to mn. Let us write them out in a chart as follows:

1 2 3 4 m
m+1 m+2 m+3 m+4 ... 2m

(h'-l)m+1 (n-1)m+2 (n-1)m+3 (n-1)m+4 nm

We must “cancel out” any term in this grid that is NOT relatively prime to either m or n.



First, let’s cancel out the terms NOT relatively prime to m. Quickly note that if some value r is
NOT relatively prime to m, then km-+r is not either. Thus, if there is some value r in between 1 and
m inclusive that shares a common factor with m, then EVERY value in its column shares a
common factor with m. Thus, there will be ¢(m) columns that not canceled out. The other columns
are completely canceled out.

Now, consider the remaining columns. We need only to look for values that share a common factor
with n in these columns. Each column takes the following form:

r, m+r, 2m-+r, 3m+r, ..., (n-1)m+r,

Now, we will prove that each of these numbers is distinct mod n. Assume to the contrary, that two
values on the list are equivalent mod n. Let these two values be

im+r and jm+r, for 0 <i<j <n. Thus, we have:

im+1=jm+r (mod n)
jm —im =0 (mod n)
m(j — i) =0 (mod n)

It follows that n divides evenly into m(i — j). But, we are given that gcd(m,n) = 1. This implies that
n| (i —j). But, this is impossible because 0 < j — i < n. This is our contradiction. Thus, it follows
that each of the n numbers on that list is not equivalent mod n. Thus, there is exactly 1 number for
each residue class mod n in the list. It follows that EXACTLY ¢(n) of these are divisible by n.
Finally, if we take a look at the numbers not crossed out, there are exactly ¢(m)d(n) of them. Here
is a quick example with m = 8 and n = 15. All crossed out numbers are underlined. We have ¢(8)
= 4 columns of numbers not crossed out.

1 2 3 4 5 6 7 8 In each column there are
9 10 11 12 13 14 15 16 $(15) = 8 numbers not
17 18 19 20 21 22 23 24 crossed out.

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112

113 114 115 116 117 118 119 120

Now, given these two results, we can derive a formula for ¢(n) for any positive integer n. Given
n’s prime factorization, one can simply calculate the phi function of each prime factor separately
and multiply these all together.

For example, $(25x3x72) = $(25)d(3)d(72) = (2° — 24)(3 — 1)(7% - 7) = 16(2)(42) = 1344.



Euler’s Theorem
Euler’s Theorem: If gcd(a,n) = 1, then a®™ =1 (mod n).

Definition of a reduced residue system modulo n: A set of ¢(n) numbers r1, r2, r3, ... rgn) such that
ri=rj, forall 1 <i<j<¢(n) with ged(ri, n) =1 forall 1 <i < ¢(n).

Theorem about reduced residue systems: If r1, r2, 13, ... ry(n) iS a reduced residue system modulo
n, and gcd(a,n) = 1, then ar, arz, ars, ... aryn) iIs ALSO a reduced residue system modulo n.

Proof: We need to prove two things in order to verify the theorem above:

1) ari=arj, forall 1 <i<j<¢(n)
2) ged(ari, n) =1 forall 1 <i<¢(n)

Proof of 1:

Assume to the contrary that there exist distinct integers i and j such that ari = arj (mod n). We can
deduce the following:

ari = arj (mod n)
(ari - arj) = 0(mod n).

n | (a(ri—rj))

We know that gcd(a,n) = 1. Thus, based on a theorem proved earlier, it follows that
n | (ri —rj). But, this infers that ri = rj (mod n). This contradicts our premise that ri, rz, rs, ... rym) IS
a reduced residue system modulo n. Thus, we can conclude that ari = arj, for all 1 <i <j < ¢(n).

Proof of 2:

Since gcd(a,n)=1 and gcd(ri,n)=1, it follows that n shares no common factors with a or ri. Thus, it
shares no common factors with their product and we can conclude that gcd(ari, n) =1 forall 1 <i

<o(n).
Now, we will use this theorem to prove Euler’s theorem:

Letra, r2, 13, ... ryn) be a reduced residue system modulo n, and gcd(a,n)=1. Then we have that ar1,
arz, ars, ... are(n) is a reduced residue system modulo n. Since both are reduced residue systems
modulo n, we know that the their products are equivalent mod n:

4(n) 4(n)
[Tar =[x (modn)
i=1 i=1
4(n) #(n)
ar, - | |r,=0(modn)

i=1 i=1



#(n) #(n)

a®™Jr - []r =0 (modn)
i=1 i=1

#(n)

(] ]r )@®—1)=0 (mod n)
i=1
Thus, we have that n divides this product. But, we know that gcd(ri, n) = 1 for each value of i. Thus

the first large product of ¢(n) terms is relatively prime to n. It follows that n divides the last factor:

n|(@®™-1)
a’™ = 1 (mod n), proving Euler’s Theorem.

Wilson’s Theorem
The theorem follows rather simply from some of our following work:

(p—1)! =-1 (mod p) for all primes p.

This result can be verified for p = 2. Now, let’s consider all odd p. Since each value 1,2, ...,p—1
is relatively prime to p, each has an inverse mod p. We know that the inverse of 1 is 1 and the
inverse of p— 1 is p — 1. But, for each other value on the list, its inverse is different than itself.
To see this, let’s directly set up an equation for a value k that is its own inverse mod p:

k?=1 (mod p)

k? -1 =0 (mod p)

(k—=1)(k +1)=0 (mod p)

This implies that p | (k — 1) or p | (k + 1). These are exactly the two values we have written above
as having self inverses.

Now, consider the product
1x2x3x4..x(p-1)
Ix(p-1Dx2x3x4...x(p-2)

Each of the terms in the second set of parentheses (there are an even number of them), have their
inverses mod p in that set. We can pair up these values such that

Ix(p-Dx2x3x4..x(p-2) =lx(p-1Dx1x1...x1(modp)
=(p—1)modp
-1 (mod p)



