
Elliptic Curves (for use in Cryptography) 
 

Most Public Key Cryptography schemes involve the use of groups, in some way shape or form, as 

previously discussed. In RSA, the members of our group are integers relatively prime to the public 

key n, and the operation used is modular exponentiation. While this works, the computation 

required to get the desired security is quite a bit, rendering RSA to be fairly slow compared to 

private key schemes. A public key scheme that is faster than RSA is desirable for this reason. 

 

Elliptic Curves (real-valued) are studied in Group Theory as well. The general form of the equation 

of an elliptic curve is: 

y2 = x3 + ax + b 

 

The idea is that the LHS is simply y2 (so for any x value making the RHS positive, there are two 

matching y values) while the RHS is a cubic equation in x. It turns out that any general cubic can 

be transformed into another cubic without the quadratic term that has roots related to the original. 

(This is a neat exercise by itself. Think about rewriting the cubic x3 + cx2 + dx + e by making a 

variable substitution for x so that after the substitution, there is no quadratic term.) 

 

The key operation we will describe for these curves is addition, an operation which is definitely 

not intuitive. Given two points P and Q on a Elliptic Curve, if we draw a line through those two 

points, the line will usually intersect in a third point. We will define this point as -R. To negate a 

point, simply reflect it over the x-axis. (Thus, for a given point, its negative point has the same x 

coordinate and opposite y coordinate. For example, on the elliptic curve y2 = x3 + 2x + 1, the 

negative of the point (1, 2) is (1, -2).) 

 

We define the sum of P + Q equal to R, using the definition above. Here is an illustration on a 

typical looking elliptic curve: 

 

     
 

We can define multiplication as repeated addition of a point. (Note: adding a point to itself is 

slightly different than the illustration above.) Just like the discrete log problem, it’s relatively easy 

for us to add a point P to itself k times to calculate kP, but given kP and P, it’s difficult to figure 

out the value of k. 

 



In cryptography, we’ll use integer versions of elliptic curves by adding a prime number modulus. 

Thus, an elliptic curve used for cryptography will create a group of points of the form (x, y), where 

both x and y are integers mod p that satisfy the equation: 

 

y2 ≡ (x3 + ax + b) mod p 

 

where a and b are valid integers mod p. Let Ep(a, b) refer to the Elliptic Curve with the equation 

above. Thus, E23(1, 1) is the Elliptic Curve with the equation y2 ≡ (x3 + x + 1) mod 23. 

 

It turns out that in order for this equation to produce a valid set of points that form a group under 

point addition, it’s necessary that 4a3 + 27b2 ≢ 0 (mod p). 

 

Each ordered pair of integers (x, y) with 0 ≤ x, y < p that satisfy the equation above are the points 

for the Elliptic Curve. In addition, we have a special point, O, called the origin, that is part of the 

curve. This point does not have coordinates, per se. 

 

Here are the rules for addition: 

 

1. For each point P on the curve, P + O = P 

 

2. For each point P = (x, y), -P = (x, -y). Under mod, this means -P = (x, p-y) and P + (-P) = O. 

 

3. Let P = (xP, yP) and Q = (xQ, yQ). Define R = P + Q, where R = (xR, yR). We can calculate R as 

follows: 

 

First calculate lambda, which is a roughly translates to slope: 

 

𝜆 =
𝑦𝑄−𝑦𝑃

𝑥𝑄−𝑥𝑃
 𝑚𝑜𝑑 𝑝, if P ≠ Q 

 

𝜆 =
3𝑥𝑃

2 +𝑎

2𝑦𝑃
 𝑚𝑜𝑑 𝑝, if P = Q 

 

Then, we can calculate the necessary x and y coordinates (in that order), as follows: 

 

𝑥𝑅 = (𝜆2 − 𝑥𝑃 − 𝑥𝑄) 𝑚𝑜𝑑 𝑝 

 

𝑦𝑅 = (𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃) 𝑚𝑜𝑑 𝑝 

 

  



Example of Adding P + Q 

For this example, we’ll use the Elliptic Curve E23(1, 1), which uses the equation y2 ≡ (x3 + x + 1) 

mod 23. Two points on this curve are P = (3, 10) and Q = (9, 7). We will calculate R = P + Q. 

 

First we must calculate lambda: 

 

𝜆 =
𝑦𝑄 − 𝑦𝑃

𝑥𝑄 − 𝑥𝑃
 𝑚𝑜𝑑 𝑝 =

7 − 10

9 − 3
=

−3

6
= (−3)(6−1) = (−3)(3−12−1) = −2−1 (𝑚𝑜𝑑 23) 

 

Note that effectively, we can “cancel” a common factor in the numerator and denominator even 

though we are working under mod, because we can rewrite the denominator as a product of 

modular inverses. In the end though, once we cancel items, we are typically still left with a modular 

inverse calculation to make, since we aren’t allowed fractions. 

 

We can either run the Extended Euclidean Algorithm to find 2-1 mod 23, or eyeball that 2 x 12 = 

24 = 1 (mod 23). It follows that: 

 

𝜆 = −2−1 ≡ −12 ≡ 11 (𝑚𝑜𝑑 23) 

 

Next, let’s solve for xR: 

 

𝑥𝑅 = (𝜆2 − 𝑥𝑃 − 𝑥𝑄) 𝑚𝑜𝑑 𝑝 = (112 − 3 − 9) = 109 ≡ 17 (𝑚𝑜𝑑 23) 

 

Finally, let’s solve for yR: 

 

𝑦𝑅 = (𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃) 𝑚𝑜𝑑 𝑝 = (11(3 − 17) − 10) ≡ (11 × 9 − 10) ≡ 89 ≡ 20 (𝑚𝑜𝑑 23) 

It follows that (3, 10) + (9, 7) = (17, 20). 

 

Example of Adding 2P 

Use the same curve and the point P = (3, 10). Let’s calculate R = 2P. We still have to find lambda: 

 

𝜆 =
3𝑥𝑃

2 + 𝑎

2𝑦𝑃
 𝑚𝑜𝑑 𝑝 =

3(3)3 + 1

2(10)
=

28

20
=

7

5
= 7(5−1) 𝑚𝑜𝑑 23 

 

Let’s use the Extended Euclidean Algorithm to determine 5-1 mod 23. Note that since we’ve 

established that we can “cancel” in fractions, I have done so above, directly just canceling until 

the resulting fraction is in lowest terms. (Also, you’ll notice that an alternate path would have been 

to reduce 28 to 5 and rewrite the fraction as ¼, which is just 4-1 mod 23. Both will lead to the 

correct answer for lambda. 

 

23 = 4 x 5 + 3 

5 =   1 x 3 + 2 

3 =   1 x 2 + 1 

3 – 2 = 1 

 



3 – (5 – 3) = 1 

2 x 3 – 1 x 5 = 1 

2(23 – 4 x 5) = 1 

2 x 23 – 9 x 5 = 1 

5-1 = -9 mod 23 

 

Now, solving for lambda: 𝜆 = 7(5−1) ≡ 7(−9) ≡ −63 ≡ 6 𝑚𝑜𝑑 23. 

 

Now, solve for xR: 

 

𝑥𝑅 = (𝜆2 − 𝑥𝑃 − 𝑥𝑄) 𝑚𝑜𝑑 𝑝 = (62 − 3 − 3) = 30 ≡ 7 (𝑚𝑜𝑑 23) 

 

Finally, let’s solve for yR: 

 

𝑦𝑅 = (𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃) 𝑚𝑜𝑑 𝑝 = (6(3 − 7) − 10) = −24 − 10 = −34 = 12 (𝑚𝑜𝑑 23) 

 

This means that 2 x (3, 10) = (7, 12) 

 


