
El Gamal Cryptosystem 

The El Gamal Cryptosystem uses the same two global elements that the Diffie-Hellman Key 

Exchange uses, a large prime number which we’ll call q, and a primitive root, which we’ll call α. 

 

The user Alice (A), to whom messages can be sent does the following: 

 

1. Generates a random integer XA such that 1 < XA < q – 1. (This is her private key.) 

 

2. Computes YA = 𝛼𝑋𝐴 mod q. (This is her posted public key others use to send messages to her.) 

--------------------------------------------------------------------------------------------------------------------- 

 

Here is how Bob (or anyone for that matter), can send an encrypted message to Alice: 

 

1. M, the plaintext message must be an integer in between 0 and q-1, inclusive. 

 

2. Bob chooses a random integer, k, 1 ≤ k ≤ q – 1. (Note: Each choice of k he selects results in a 

different ciphertext. Thus, for this cipher, a single plaintext maps to many possible different 

ciphertexts, and each of those ciphertexts maps back to the same plaintext. The value of k that 

Bob selects determines WHICH of the possible ciphertexts for M will get created.) 

 

3. Compute K = 𝑌𝐴
𝑘 mod q. This is a piece used to create a portion of the ciphertext. 

 

4. The ciphertext is the ordered pair (C1, C2), computed as follows: 

 

   C1 = αk mod q  C2 = KM mod q 

--------------------------------------------------------------------------------------------------------------------- 

 

Here is how Alice recovers the plaintext: 

 

1. She needs to figure out Bob’s value of K and can do so as follows: 

 

   K = 𝐶1
𝑋𝐴 mod q. (If you look carefully, this is precisely Diffie-Hellman!) 

 

2. She computes K-1 mod q via the Extended Euclidean Algorithm. 

3. She recovers the message by calculating (𝐶2𝐾
−1) mod q. 

 

First, let’s prove she recovers the message from Bob: 

 

Recall that C1 = αk mod q and K = 𝑌𝐴
𝑘 ≡ (𝛼𝑋𝑎)𝑘 ≡ 𝛼𝑘𝑋𝑎 mod q. 

 

Now, she calculates 𝐶1
𝑋𝐴 ≡ (𝛼𝑘)𝑋𝐴 ≡ 𝛼𝑘𝑋𝑎 mod q = K, as shown above. 

 

Once she knows K, as previously discussed, she can obtain K-1, and it should be fairly clear that  

 

𝐶2𝐾
−1 ≡ (𝐾𝑀)𝐾−1 ≡ (𝐾𝐾−1)𝑀 ≡ 𝑀 mod q, thus, Alice properly recovers the plaintext. 



The key drawback to this method is that the size of the ciphertext is twice the size of the 

plaintext, and the time used in the process is slightly more (a couple steps added to a modular 

exponentiation for both encryption and decryption compared to RSA). 

 

Let’s see an example with small values, so we can see the effect of picking different values of k 

for encryption. 

 

Let’s choose q = 11 and α = 2. Let Alice choose XA = 4, so YA = 24 mod 11 = 5. 

 

Here is a chart of 2 raised to each power mod 11: 

 

Exp 0 1 2 3 4 5 6 7 8 9 10 

Value 1 2 4 8 5 10 9 7 3 6 1 

 

Here is a chart of all possible ways to encrypt M = 7, selecting values of k from 1 to 10: 

 

M k K C1 C2 𝐶1
𝑋𝐴 K-1 K-1C2 

7 1 5 2 2 5 9 7 

7 2 3 4 10 3 4 7 

7 3 4 8 6 4 3 7 

7 4 9 5 8 9 5 7 

7 5 1 10 7 1 1 7 

7 6 5 9 2 5 9 7 

7 7 3 7 10 3 4 7 

7 8 4 3 6 4 3 7 

7 9 9 6 8 9 5 7 

7 10 1 1 7 1 1 7 

 

Thus, each of the ten ordered pairs (2, 2), (4, 10), (8, 6), (5, 8), (10, 7), (9, 2), (7, 10), (3, 6), (6, 

8) and (1, 7) are all possible encryptions of  the plaintext M = 7. 


