
Elliptic Curve Cryptography 

 
Analog of Diffie-Hellman Key Exchange 

We can use elliptic curves to exchange keys, very similar to the Diffie-Hellman Key Exchange. 

 

The first public key will be an elliptic curve Ep(a, b), for a large prime number p. 

 

Next, pick a base point G = (x1, y1) which has a very large order, n, on the curve. As you might 

expect, the order of a point, G, is the smallest positive integer n such that nG = 0, where 0 is the 

origin point. 

 

Both the curve and the base point are the public keys for the system. 

 

Alice and Bob can exchange keys as follows: 

 

Alice picks a secret value nA < n and sends Bob the point nA x G. 

 

Bob picks a secret value nB < n, and sends Alice the point nB x G. 

 

Alice takes the point Bob sends her and multiplies it by nA. 

Bob takes the point Alice sends her and multiplies it by nB. 

 

After this, both Alice and Bob have nA x nB x G as their shared key. 

 

Similar to the discrete log problem, when Eve sees either nA x G or nB x G, she can not determine 

either nA or nB. Similarly, she can’t use the two values nA x G and nB x G together to combine in 

some way to create nA x nB x G. 

 

In class, we looked at the Elliptic Curve E23(1, 1) using the point P = (3, 10) as a base point. We 

found out that this point had order 28. Below is a list of each number from 1 to 28 multiplied by 

point P. The number to the left of the point represents what we are multiplying by: 

 

1. (3, 10)     15. (1, 16) 

2. (7, 12)     16. (5, 19) 

3. (19, 5)     17. (18, 3) 

4. (17, 3)     18. (6, 19) 

5. (9, 16)     19. (0, 22) 

6. (12, 4)     20. (13, 7) 

7. (11, 3)     21. (11, 20) 

8. (13, 16)     22. (12, 19) 

9. (0, 1)     23. (9, 7) 

10. (6, 4)     24. (17, 20) 

11. (18, 20)     25. (19, 18) 

12. (5, 4)     26. (7, 11) 

13. (1, 7)     27. (3, 13) 

14. (4, 0)     28. (0, 0) 



Thus, if we were using this curve and the point G = (3, 10) as our base point, if Alice chose nA = 

11 and Bob chose nB = 16, then Alice would send Bob (18, 20) and Bob would send Alice (5, 19). 

Both, when multiplying would end up with 11 x 16 x G = 176 x G = 20 x G = (13, 7). 

 

Here’s a better representation: 

 

Alice: Picks nA = 11, sends Bob (18, 20). 

 

Bob: Picks nB = 16, sends Alice (5, 19). 

 

Alice: Receives (5, 19). Mutliplies it by nA = 11 and retrieves the point (13, 7). 

 

Bob: Receives (18, 20). Multiplies it by nB = 16 and retrieves the point (13, 7). 

 

Analog of El Gamal Cryptosystem 

Just like the key exchange, our global public elements are an elliptic curve Ep(a, b) and a point G 

on the curve with a large order, n. 

 

Let Alice create her own set of keys so others can send messages to her. She first selects a private 

key nA < n. She then calculates the corresponding public key, PA = nA x G. (Still very similar to 

the previous key exchange.) 

 

If Bob wants to send Alice a message, he can generate a random integer, k < n.  

 

Then he calculates C1 = kG and C2 = Pm + kPA, where Pm is the plaintext message (encoded as a 

point) and PA, as previously discussed, is Alice’s public key. He sends this pair (C1, C2) to Alice, 

very similar to El Gamal, where Bob generates a random secret value k and uses that to send a pair 

of cipher texts. Also notice that the same plaintext can be encrypted in n different ways, depending 

on the choice of k. 

 

When Alice receives (C1, C2), she takes C1 and multiplies it by nA. 

 

Note that nA x C1 = nA x k x G = (nA x k) x G.  

Similarly, note that kPA = k x (nA x G) = (k x nA) x G = (nA x k) x G. 

 

Thus, after Alice calculates temp = nA x C1. Then, to reveal the plaintext, she can just calculate  

 

Pm = C2 – temp. Indeed, notice that Pm + kPA – temp = Pm + (nA x k) x G - (nA x k) x G = Pm, since 

the last two terms cancel. (It’s like moving forward around the circle some number of slots and 

then moving backwards around the circle the same number of slots, when we think about adding 

each copy of G as moving one slot around a circle with n slots.) 

 

 


