Data Encryption Standard(DES)

Data Encryption Standard(DES)

Note: All of the look up tables (referred to later in these notes) for DES can be found
here:

http://orion.towson.edu/~mzimand/cryptostuff/DES-tables.pdf
Here is the basic algorithm used for DES:
To encrypt a plaintext x of 64 bits and a secret key K of 56 bits do the following:

1) Compute xo = IP(x), a fixed permutation of the bits in x. IP is specified in the link
above.

2) Let xi = LiRj, for 0 <i < 16, where L; is the 32 leftmost bits of xj and R; is the 32
rightmost bits of xi. Make the following sequence of computations:

for (i=1to 16) {
Li=Ria
Ri = Li1 ® f(Ri-1, Kj)
}

Essentially, each loop iteration is known as a Feistel round. (Feistel is the creator of
DES.) DEs comprises 16 of these rounds. Each round encrypts % of the bits from the
pervious round. The function f and the key for the ith round K; will be discussed in detail
later in these notes.

3) y = IPY(RusL1s), this means applying the inverse permutation applied in step 1 to the
string RisL16. (Notice the “reverse” order of the two blocks Lisand Rie.)

In essence, you would repeat this process for every block of 64 bits that needs to be
encrypted.



Now, we need to mention the details of step 2. First the function f:

The first input to f, Ri.1 is 32 bits, while the second input K; is 48 bits from the 56 bits of
the key K.

1) Expand the 32 bits of Ri.1 to 48 bits using the matrix E, which is also shown in the link
on the first page. This matrix delineates an ordering of the bits of Ri.1 where 16 of the bits
are repeated. Let this computed value be E(Ri.1).

2) Compute E(Ri-1) @ K. Let this computation produce B = B1B>...Bg, where each Bj, 1 <
j < 8is 6 bits of B.

3) This is probably the strangest part of the algorithm. In this step the 48 bits of B need to
be reduced to 32 bits. This is done via 8 S-boxes, Si, Sy, ... Ss. One way to think about
these S-boxes is the following. Each is a lookup table with 4 rows and 16 columns with
64 entries. Each entry corresponds to the output for a given input. In essence, an S-box
specifies a function from 6 binary bits to 4 binary bits. Compute C; = Sj(B;) for, 1 <j <8.
Let C = C1C»...Cg. The details of how to use the S-boxes are below.

4) f(Ri-1, Ki) = P(C), where P is a fixed permutation of the bits in C. (P is included in the
link.)

How to use the S-boxes (in link)

Let the 6 input bits be bibobsbabsbe. Let R = bibs, a binary value that ranges from 0 to 3,
and C = babsbasbs, a binary value ranging from 0 to 15. R will tell you the row to look on
in the S-box. (Top row is 0, bottom is 3.) S will tell you the column to look on in the S-
box. Each value in an S-box is from 0 to 15. This corresponds to 4 binary bits, the output.
Let’s practice a little bit:

Calculate S1(101110)

We are using S-box 1. We are going to row = 10 = 2, column = 0111 = 7. The entry in
row 2, column 7 in S-box 1 is 11. Just to make sure you’re in the right place, directly to
the left of the 11 is 2 and to its right is 15.

Calculate S3(010110)

We are using S-box 3. We are going to row = 00 = 0, column = 1011 = 11. The entry in
row 0, column 11 in S-box 3 is 7. Just to make sure you’re in the right place, directly to
the left of the 7 is 12 and to its right is 11.

Calculate Sg(100101)

We are using S-box 8. We are going to row = 11 = 3, column = 0010 = 2. The entry in
row 3, column 0 in S-box 8 is 2. Just to make sure you’re in the right place, directly the
right of the 2 is a 1 and to the right of that 1 is a 14.



Examples of Applying any of the permutation matrices (1P, P, E)
The method to apply the permutation matrices IP, IP, E and P are all the same.

Let’s just use E as an example:

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Let’s say the input to E, in hexadecimal is:

A687 DE29

Expanded to binary it’s

1010
0110
1000
0111
1101
1110
0010
1001

Now, the matrix says, first grab the 32" bit, then the 1% bit, 2" bit, 3" bit, 4" bit and 5™
bit:

110100

Continuing, we have the following (with the first row repeated):

110100
001101
010000
001111
111011
111100
000101
010011

Converted back to HEX we have: DOD 40F EFC 163



