
Data Encryption Standard(DES)

Data Encryption Standard(DES)

Note: All of the look up tables (referred to later in these notes) for DES can be found

here:

http://orion.towson.edu/~mzimand/cryptostuff/DES-tables.pdf

Here is the basic algorithm used for DES:

To encrypt a plaintext x of 64 bits and a secret key K of 56 bits do the following:

1) Compute x0 = IP(x), a fixed permutation of the bits in x. IP is specified in the link

above.

2) Let xi = LiRi, for 0  i  16, where Li is the 32 leftmost bits of xi and Ri is the 32

rightmost bits of xi. Make the following sequence of computations:

 for (i=1 to 16) {

 Li = Ri-1

 Ri = Li-1  f(Ri-1, Ki)

 }

Essentially, each loop iteration is known as a Feistel round. (Feistel is the creator of

DES.) DEs comprises 16 of these rounds. Each round encrypts ½ of the bits from the

pervious round. The function f and the key for the ith round Ki will be discussed in detail

later in these notes.

3) y = IP-1(R16L16), this means applying the inverse permutation applied in step 1 to the

string R16L16. (Notice the “reverse” order of the two blocks L16 and R16.)

In essence, you would repeat this process for every block of 64 bits that needs to be

encrypted.

Now, we need to mention the details of step 2. First the function f:

The first input to f, Ri-1 is 32 bits, while the second input Ki is 48 bits from the 56 bits of

the key K.

1) Expand the 32 bits of Ri-1 to 48 bits using the matrix E, which is also shown in the link

on the first page. This matrix delineates an ordering of the bits of Ri-1 where 16 of the bits

are repeated. Let this computed value be E(Ri-1).

2) Compute E(Ri-1)  Ki. Let this computation produce B = B1B2...B8, where each Bj, 1 

j  8 is 6 bits of B.

3) This is probably the strangest part of the algorithm. In this step the 48 bits of B need to

be reduced to 32 bits. This is done via 8 S-boxes, S1, S2, ... S8. One way to think about

these S-boxes is the following. Each is a lookup table with 4 rows and 16 columns with

64 entries. Each entry corresponds to the output for a given input. In essence, an S-box

specifies a function from 6 binary bits to 4 binary bits. Compute Cj = Sj(Bj) for , 1  j  8.

Let C = C1C2...C8. The details of how to use the S-boxes are below.

4) f(Ri-1, Ki) = P(C), where P is a fixed permutation of the bits in C. (P is included in the

link.)

How to use the S-boxes (in link)

Let the 6 input bits be b1b2b3b4b5b6. Let R = b1b6, a binary value that ranges from 0 to 3,

and C = b2b3b4b5, a binary value ranging from 0 to 15. R will tell you the row to look on

in the S-box. (Top row is 0, bottom is 3.) S will tell you the column to look on in the S-

box. Each value in an S-box is from 0 to 15. This corresponds to 4 binary bits, the output.

Let’s practice a little bit:

Calculate S1(101110)

We are using S-box 1. We are going to row = 10 = 2, column = 0111 = 7. The entry in

row 2, column 7 in S-box 1 is 11. Just to make sure you’re in the right place, directly to

the left of the 11 is 2 and to its right is 15.

Calculate S3(010110)

We are using S-box 3. We are going to row = 00 = 0, column = 1011 = 11. The entry in

row 0, column 11 in S-box 3 is 7. Just to make sure you’re in the right place, directly to

the left of the 7 is 12 and to its right is 11.

Calculate S8(100101)

We are using S-box 8. We are going to row = 11 = 3, column = 0010 = 2. The entry in

row 3, column 0 in S-box 8 is 2. Just to make sure you’re in the right place, directly the

right of the 2 is a 1 and to the right of that 1 is a 14.

Examples of Applying any of the permutation matrices (IP, P, E)

The method to apply the permutation matrices IP, IP-1, E and P are all the same.

Let’s just use E as an example:

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Let’s say the input to E, in hexadecimal is:

A687 DE29

Expanded to binary it’s

1010

0110

1000

0111

1101

1110

0010

1001

Now, the matrix says, first grab the 32nd bit, then the 1st bit, 2nd bit, 3rd bit, 4th bit and 5th

bit:

110100

Continuing, we have the following (with the first row repeated):

110100

001101

010000

001111

111011

111100

000101

010011

Converted back to HEX we have: D0D 40F EFC 163

