AES Key Schedule, Explanation of GF(2®) Field

Here is pseudocode which shows how to produce the round keys (from the Stallings book
Cryptography and Network Security)

KeyExpansion (byte key[1l6], word w[44]) {
word temp;

for

(1=0; 1i<4; 1i++)
w[i] =

(key[4i], key[4i+1l], key[4i+2], key[4i+3]);

for (i=4; i<44; i++) {
temp = w[i-1];
if (1i%4 == 0)
temp = SubWord (RotWord (temp)) XOR Rcon[i/4];
w[i] = w[i-4] XOR temp;
}
}

Normally, we simply XOR two previous words (32 bits — the last four, and the fourth to
last word) to get the new word. But, for each multiple of 4, we do a special operation on
temp. Namely, we first perform a cyclic left-shift of one byte to it (this is the RotWord),
then we perform a byte substitution on each byte in it based on the original S-box, also
used in the beginning of the algorithm, and finally we XOR it with a value stored in the
array Rcon. Here are the values:

] 1 2 3 4 5 6 7 8 9 10
RCon[j] | 01 02 04 08 10 20 40 80 1B 36

This array starts with the value 01 in the first index, and all subsequent indexes store a
value obtained by doubling the previous value in the field discussed earlier. In all cases
except for going from index 8 to 9, this is just regular doubling. Here's how we calculate
index 9:

80 x 02 = 10000000 x 00000010 = 00000000 XOR 00011011 =00011011 = 1B.

This turns out NOT to be an exception because it’s just multiplication by 2 in the AES
field.

Let’s look at a couple examples of the Key Expansion Algorithm:

Example 1 — calculating w[26]
Let’s say that in HEX w[22] = 26 35 A4 B8 and that
w[25]= A3 C7 5B B3

We can use this information to calculate w[26] as follows: Notice that when we go through
the pseudocode, the if statement doesn’t trigger because 26 isn’t divisible by 4. Thus all
we do is XOR the two words. Using the Hex XOR chart expedites this process and we get:

w[22] = 26 35 A4 BS
w[25] = A3 C7 5B B3
w[26] = 85 F2 FF OB

Example 2 — calculating w[40]
Consider calculating w[40] given the following information:

w[36] =B1 89 C4 07 (in hex)
w[39] =9C 2F 63 DE (in hex)

Notice that this time, 40 is divisible by 4, so there are several steps to perform before the
final XOR. Here are the steps:

1. temp = RotWord(w[39])

2. temp = SubWord(temp)

3. temp = Rcon[40] XOR temp
4. w[40] = w[36] XOR temp

Here is how we can fill this information out in a table:

RotWord SubWord Rcon[i/4] XOR FinalResult
2F 63 DE 9C 15FBIDDE | 36000000 23 FB 1D DE |92 72 D9 D9

First, we take w[39] and move its first byte (9C) to the end.

Next, we substitute for each byte from the S-box. (Note S-box(2F) = 15, etc.)

Next, we XOR Rcon[10] with the result from the subword — notice that only the first byte
changes. This is always the case, because the Rcon array items always have 24 0 bits at
their end.

Finally, XOR the result from the previous step with w[36], using the HEX xor chart:
B1 89 C4 07
23 FB 1D DE

92 72 D9 DO

Field GF(2%) used for AES

A field is a special type of group. Group Theory is a branch of Number Theory (which of
course is a branch of Mathematics.)

Group Definition
A group in mathematics is a set of elements (G) paired with an operation (°) for which
the following properties hold:

Al. Closure — If a and b are elements of G, then a°b is as well.

A2. Associative—a°(b°c)=(a°b)°cistrue forallabandcin G

A3. Identity Element — there is an element e in G such that a°¢ = e°a =a for all a in G.
A4. Inverse Element — for each a in G, there is an a’ in G such that a°a’ =e.

An example of a group would be addition mod n of the elements 0, 1, 2, ..., n-1. When we
mod (using the function) we always arrive at another element in the set. The order of
parentheses in addition doesn’t matter. The identity element is 0. Each element x (except
0) has the inverse element n — x, and 0’s inverse is 0.

A group is said to be finite if it has a finite number of elements and infinite if it has an
infinite number of elements.

Abelian Group

An Abelian Group is a group that also satisfies the following property:

AS5. Commutative - a°b = b°a for all elements a and b in G.

The previous example is also an Abelian Group, since the order of addition doesn’t matter.
Cyclic Group

For an element a in a group G, define a* = a®a®a...%a, k times total.

A group is cyclic if and only if there exists some element a in G such that for every other
element b in G, b = a* for some integer k. The element a is said to be a generator for the

group. Note that groups may have multiple generators.

For addition under mod n, any value that is relatively prime to n in G is a generator. For
example, let n = 8 and a = 5. Here is a table with the values of a added k times, mod n:

k 0 1 2 3 4 5 6 7 8
af 0 5 2 7 4 1 6 3 0

We can see that the table eventually cycles, and each item in the set {0,1,2,3,4,5,6,7} can
be obtained by “exponentiating” a some number of times.

Ring
A ring is a set of elements, but with two operations, addition (+) and multiplication (x). A
ring satisfies the following properties:

A1 — AS5: These properties with the addition operator

M1. Closure under multiplication: if a and b are in G, then a x b is in G also.

M2. Associativity under multiplication: ax (b x ¢) =(ax b) x ¢, for all a, b, and ¢ in G.
M3. Distributive Law: ax (b+c)=axb+axc, foralla,band cin G.

If a ring is also commutative under multiplication, we call it a Commutative Ring:
M4.axb=Dbxaforalla, binG.

An Integral Domain is a Commutative Ring which also satisfies the two following
properties:

MS5. There is an element 1 in G such that forallainG,ax1=1xa=a.
M6. No zero divisors: If a and b are in G, and if a x b =0, then eithera=0or b= 0. (0 is
the additive identity.)

Field
A field is an Integral Domain which satisfies one additional property:

M7. Multiplicative inverse: For each a in G, except 0, there exists an element a™! such that
ax a! =1 (multiplicative identity)

Note that addition and multiplication mod p, for a prime number p forms a field with the

elements in the set {0, 1, 2, ..., p-1}.

Use of Polynomials for AES
A regular polynomial, f(x), of degree d is of the form:

f(0) = cgx® +cqox¥ T+ 4 x + ¢
where each c¢; is a constant (coefficient).
When we’re dealing with modular arithmetic, we will limit the output of the polynomials
to valid remainders mod n. We can do this by reducing any coefficients out of range to the
unique equivalent value in range.

For example, if n = 5 (the mod value), then:

(Bx?+4x+2)+(Ux*+x+1)=2x*>+3

When we add 3 + 4 =7, we immediately reduce this to 2 mod 5, producing the first term.
For the second term, since 4 + 1 = 5 and 5 is equivalent to 0 mod 5, the term isn’t there.
Finally, 2 and 1 get added normally since 3 is already in range.

In GF(2%), we do the following:

1. Limit polynomial coefficients to be 0 or 1 (mod 2).
2. Limit the degree of the polynomial by “modding” it by a polynomial of degree 8.

Modding by a polynomial
Let’s quickly define modding by a polynomial. Just like numbers, where we can define a
unique remainder when dividing a by b:

a=bq+r,0<r<b

we can do the same for dividing polynomial a(x) by b(x):

a(x) = b(x)q(x) + r(x), where degree of r is less than degree of b.

Here is a quick example of doing a mod for two polynomials a(x) = x* + x> + 1 and b(x) =

X2+ x+1:
X2 +1

xX*+x+1|x+ x>+ 1
X +x+x?

X2 +1
X2+x+1
X

Note that in the field GF(2?), the coefficient -1 doesn’t exist as its equivalent to 1.
This means that when we calculate a(x) mod b(x) we get just x because we have:

XM+ =2 +x+ 1) (X*+ 1) +x

Specifically, for AES the mod polynomial is m(x) = x® +x*+ x> +x + 1

One key calculation that will be important is calculating x* mod m(x). For convenience,
I’ve included the work here:

1

XB+xt+x3+x+1]x8
X+rxt P +x+1

xX*+x+x+1
It follows that x® mod m(x) = x* + x> + x + 1 because
= +xt++x+Dx1+x*+x3+x+1)
in the AES field.
Multiplication in the AES field
Thus, we can finally define multiplication in the AES field: Given two polynomials a(x)

and b(x) in GF(2%), their product will be a(x) x b(x) mod m(x). Note that when we multiply,
we immediately reduce all coefficients mod 2.

Then, if the result is a polynomial of degree 8 or greater, we must reduce the result mod
m(x) via long division. (Though, in code there’s a much easier way to do it.)

Once we note that x3 = x* + x> + x + 1 (mod m(x))
Then we can figure out that
=xx)=x(x*+x*+x+1)=x> +x*+x*+x.

We can similarly figure out other powers of x. If one of these calculations produces a term
of the form x8, we just substitute that with x*+ x> + x + 1.

Here are a couple examples:

X+ +x)E+x2+1) =x xR+ x P+ X
=x7 4+ 2x% +2x% + 2x* + x* + x?
=x"+x*+x2

X+ x)xH1) =x"0+x0+x>+x
=x’x})+x°+x7+x
=x*x*+xX+x+ D) +x8+x0+x
=x0+x0+ 3+ +x0+x+x
=x>+x*>+x

AES Mix Columns, S-Box

The manner in which mix columns works is that when we specify a multiplication, such as
03 x D8, we are really multiplying two polynomials in the field GF(2%) with the polynomial
m(x) = x® + x* + x> + x + 1. One other note: this polynomial is irreducible. This means that
there are no polynomials a(x) and b(x), each of degree 1 or greater, that multiply to m(x)
using mod 2 for the coefficients.

An example of a reducible polynomial from a previous example is
X7+X3+X2=(x4+x3+x)(x3+x2+ 1):X2(X5+X+ 1)

Note that for this particular polynomial, there are multiple ways to express it as the product
of two polynomials of degree 1 or greater. I’ve included a second, more obvious example
at the right side of the equation.

When working the mix columns step forward, we never have to multiply by any polynomial
greater than x+1. This means that no term gets created greater than x®. Thus, the “quick
fix” we discussed earlier (replacing x® with x*+x*+x+1, or 00011011) suffices to be able to
make all necessary calculations.

The corresponding decryption matrix however, has terms such as OE, 0B, 0D and 09. Thus,
doing these by hand would necessitate a slightly better understanding of multiplication in
the field. But, the iterative trick shown previously (writing x'° as x*x®, and then doing our
substitution for x*) will suffice eventually.

The S-Box is constructed as follows, as a matrix multiplication (looking at values mod 2)
followed by an addition:

bol 1 00 0 1 1 1 19f%7 (1
bil 111 0 0 0 1 1 1|lad] |2
bl 11 11 0 0 0o 1 1|laz| o
bsi_t 1 1.1 0 0 0 1/,]|0
b, (1 11 1 1 0 0 oflas|™ |0
b| [0 1 1 1 1 1 0 of|las| [1
b| {001 1 1 1 1 offas| |1
p] 000 1 1 1 1 tial lo

Let the input to the X-Box be x7Xs...Xo, in bits from most to least significant. First, we find
the inverse of be X7X¢...xo in the field GF(2%) mod m(x). Assign this inverse the value
a7ae...a0. Then, multiply this stored in the column (in reverse as shown above) by the matrix
shown, then add the corresponding column matrix shown. This computation is how the S-
Box for AES is constructed.

As a quick example, consider the entry for {01}. The inverse of 1 in the field is 1, so we
can store ao =1 a; =0, a2 =0, ... a7 = 0. When we do the matrix multiply, we get 1’s for
the first 5 entries and 3 zeros. When we add to 11000110, we get 00111110, which, when
read in reverse is 0111 1100, or 7C, which is the entry in row 0, column 1, of the S-box.

