
AES Key Schedule, Explanation of GF(28) Field 
 

Here is pseudocode which shows how to produce the round keys (from the Stallings book 

Cryptography and Network Security) 

 
KeyExpansion(byte key[16], word w[44]) { 

 

  word temp; 

 

  for (i=0; i<4; i++) 

    w[i] = (key[4i], key[4i+1], key[4i+2], key[4i+3]); 

 

  for (i=4; i<44; i++) { 

    temp = w[i-1]; 

    if (i%4 == 0) 

        temp = SubWord(RotWord(temp)) XOR Rcon[i/4]; 

    w[i] = w[i-4] XOR temp; 

  } 

} 

 

Normally, we simply XOR two previous words (32 bits – the last four, and the fourth to 

last word) to get the new word. But, for each multiple of 4, we do a special operation on 

temp. Namely, we first perform a cyclic left-shift of one byte to it (this is the RotWord), 

then we perform a byte substitution on each byte in it based on the original S-box, also 

used in the beginning of the algorithm, and finally we XOR it with a value stored in the 

array Rcon. Here are the values: 

 

j 1 2 3 4 5 6 7 8 9 10 

RCon[j] 01 02 04 08 10 20 40 80 1B 36 

 

This array starts with the value 01 in the first index, and all subsequent indexes store a 

value obtained by doubling the previous value in the field discussed earlier. In all cases 

except for going from index 8 to 9, this is just regular doubling. Here's how we calculate 

index 9: 

 

80 x 02 = 10000000 x 00000010 = 00000000 XOR 00011011 = 00011011 = 1B. 

 

This turns out NOT to be an exception because it’s just multiplication by 2 in the AES 

field. 

 

  



Let’s look at a couple examples of the Key Expansion Algorithm: 

 

Example 1 – calculating w[26] 

Let’s say that in HEX w[22] =  26 35 A4 B8 and that 

                                    w[25] =  A3 C7 5B B3 

 

We can use this information to calculate w[26] as follows: Notice that when we go through 

the pseudocode, the if statement doesn’t trigger because 26 isn’t divisible by 4. Thus all 

we do is XOR the two words. Using the Hex XOR chart expedites this process and we get: 

 
w[22] = 26 35 A4 B8 

w[25] = A3 C7 5B B3 

------------------- 

w[26] = 85 F2 FF 0B 

 

Example 2 – calculating w[40] 

Consider calculating w[40] given the following information: 

 

w[36] = B1 89 C4 07 (in hex) 

w[39] = 9C 2F 63 DE (in hex) 

 

Notice that this time, 40 is divisible by 4, so there are several steps to perform before the 

final XOR. Here are the steps: 

 

1. temp = RotWord(w[39]) 

2. temp = SubWord(temp) 

3. temp = Rcon[40] XOR temp 

4. w[40] = w[36] XOR temp 

 

Here is how we can fill this information out in a table: 

 

 

RotWord SubWord Rcon[i/4] XOR FinalResult 

2F 63 DE 9C 15 FB 1D DE 36 00 00 00 23 FB 1D DE 92 72 D9 D9 

 

First, we take w[39] and move its first byte (9C) to the end. 

Next, we substitute for each byte from the S-box. (Note S-box(2F) = 15, etc.) 

Next, we XOR Rcon[10] with the result from the subword – notice that only the first byte 

changes. This is always the case, because the Rcon array items always have 24 0 bits at 

their end. 

 

Finally, XOR the result from the previous step with w[36], using the HEX xor chart: 
B1 89 C4 07 

23 FB 1D DE 

----------- 

92 72 D9 D9 



Field GF(28) used for AES 

 
A field is a special type of group. Group Theory is a branch of Number Theory (which of 

course is a branch of Mathematics.) 

 

Group Definition 

A group in mathematics is a set of elements (G) paired with an operation (°) for which 

the following properties hold: 

 

A1. Closure – If a and b are elements of G, then a°b is as well. 

A2. Associative – a ° (b ° c) = (a ° b) ° c is true for all a,b and c in G 

A3. Identity Element – there is an element e in G such that a°e = e°a = a for all a in G. 

A4. Inverse Element – for each a in G, there is an a’ in G such that a°a’ = e. 

 

An example of a group would be addition mod n of the elements 0, 1, 2, …, n-1. When we 

mod (using the function) we always arrive at another element in the set. The order of 

parentheses in addition doesn’t matter. The identity element is 0. Each element x (except 

0) has the inverse element n – x, and 0’s inverse is 0. 

 

A group is said to be finite if it has a finite number of elements and infinite if it has an 

infinite number of elements. 

 

 

Abelian Group 

An Abelian Group is a group that also satisfies the following property: 

 

A5. Commutative - a°b = b°a for all elements a and b in G. 

 

The previous example is also an Abelian Group, since the order of addition doesn’t matter. 

 

 

Cyclic Group 

For an element a in a group G, define ak = a°a°a…°a, k times total. 

 

A group is cyclic if and only if there exists some element a in G such that for every other 

element b in G, b = ak for some integer k. The element a is said to be a generator for the 

group. Note that groups may have multiple generators. 

 

For addition under mod n, any value that is relatively prime to n in G is a generator. For 

example, let n = 8 and a = 5. Here is a table with the values of a added k times, mod n: 

 

k 0 1 2 3 4 5 6 7 8 

ak 0 5 2 7 4 1 6 3 0 

 

We can see that the table eventually cycles, and each item in the set {0,1,2,3,4,5,6,7} can 

be obtained by “exponentiating” a some number of times. 



Ring 

A ring is a set of elements, but with two operations, addition (+) and multiplication (x). A 

ring satisfies the following properties: 

 

A1 – A5: These properties with the addition operator 

M1. Closure under multiplication: if a and b are in G, then a x b is in G also. 

M2. Associativity under multiplication: a x (b x c) = (a x b) x c, for all a, b, and c in G. 

M3. Distributive Law: a x (b + c) = a x b + a x c, for all a, b and c in G. 

 

If a ring is also commutative under multiplication, we call it a Commutative Ring: 

 

M4. a x b = b x a for all a, b in G. 

 

An Integral Domain is a Commutative Ring which also satisfies the two following 

properties: 

 

M5. There is an element 1 in G such that for all a in G, a x 1 = 1 x a = a. 

M6. No zero divisors: If a and b are in G, and if a x b = 0, then either a = 0 or b = 0. (0 is 

the additive identity.) 

 

 

Field 

A field is an Integral Domain which satisfies one additional property: 

 

M7. Multiplicative inverse: For each a in G, except 0, there exists an element a-1 such that 

a x a-1 = 1 (multiplicative identity) 

 

Note that addition and multiplication mod p, for a prime number p forms a field with the 

elements in the set {0, 1, 2, …, p-1}. 

 

 

Use of Polynomials for AES 

A regular polynomial, f(x), of degree d is of the form: 

 

𝑓(𝑥) = 𝑐𝑑𝑥𝑑 + 𝑐𝑑−1𝑥
𝑑−1 + ⋯+ 𝑐1𝑥 + 𝑐0 

 

where each ci is a constant (coefficient). 

 

When we’re dealing with modular arithmetic, we will limit the output of the polynomials 

to valid remainders mod n. We can do this by reducing any coefficients out of range to the 

unique equivalent value in range. 

 

For example, if n = 5 (the mod value), then: 

 

(3𝑥2 + 4𝑥 + 2) + (4𝑥2 + 𝑥 + 1) = 2𝑥2 + 3 

 



When we add 3 + 4 = 7, we immediately reduce this to 2 mod 5, producing the first term. 

For the second term, since 4 + 1 = 5 and 5 is equivalent to 0 mod 5, the term isn’t there. 

Finally, 2 and 1 get added normally since 3 is already in range. 

 

In GF(28), we do the following: 

 

1. Limit polynomial coefficients to be 0 or 1 (mod 2). 

2. Limit the degree of the polynomial by “modding” it by a polynomial of degree 8. 

 

Modding by a polynomial 

Let’s quickly define modding by a polynomial. Just like numbers, where we can define a 

unique remainder when dividing a by b: 

 

a = bq + r, 0 ≤ r < b 

 

we can do the same for dividing polynomial a(x) by b(x): 

 

a(x) = b(x)q(x) + r(x), where degree of r is less than degree of b. 

 

Here is a quick example of doing a mod for two polynomials a(x) = x4 + x3 + 1 and b(x) = 

x2 + x + 1: 

                   x2          + 1 

                 ----------------------- 

x2 + x + 1 | x4  +  x3 +            1 

                  x2   + x3 + x2 

                 ----------------- 

                                   x2      + 1 

                                   x2 + x + 1 

                                   ------------ 

                                           x 

 

Note that in the field GF(22), the coefficient -1 doesn’t exist as its equivalent to 1. 

 

This means that when we calculate a(x) mod b(x) we get just x because we have: 

 

x4+x3+1 = (x2 + x + 1) (x2 + 1) + x 

 

  



Specifically, for AES the mod polynomial is m(x) = x8 + x4 + x3 + x + 1 

 

One key calculation that will be important is calculating x8 mod m(x). For convenience, 

I’ve included the work here: 

 

                                  1 

                                ----------------------- 

x8 + x4 + x3 + x + 1 | x8   

                                  x8 + x4 + x3 + x + 1 

                                  ------------------------ 

                                        x4 + x3 + x + 1 

 

It follows that x8 mod m(x) = x4 + x3 + x + 1 because 

 

x8 = (x8 + x4 + x3 + x + 1) x 1 + (x4 + x3 + x + 1) 

 

in the AES field. 

 

Multiplication in the AES field 

Thus, we can finally define multiplication in the AES field: Given two polynomials a(x) 

and b(x) in GF(28), their product will be a(x) x b(x) mod m(x). Note that when we multiply, 

we immediately reduce all coefficients mod 2. 

 

Then, if the result is a polynomial of degree 8 or greater, we must reduce the result mod 

m(x) via long division. (Though, in code there’s a much easier way to do it.) 

 

Once we note that x8 = x4 + x3 + x + 1 (mod m(x))  

 

Then we can figure out that 

 

x9 = x(x8) = x(x4 + x3 + x + 1) = x5  + x4 + x2 + x. 

 

We can similarly figure out other powers of x. If one of these calculations produces a term 

of the form x8, we just substitute that with x4 + x3 + x + 1. 

 

Here are a couple examples: 

 

(x4 + x3 + x)(x3 + x2 + 1)    = x7 + x6 + x5 + x6 + x5 + x4 + x4 + x3 + x2 

                                            = x7 + 2x6 + 2x5 + 2x4 + x3 + x2 

                                            = x7 + x3 + x2 

 

(x6 + x)(x4+1) = x10 + x6 + x5 + x 

                       = x2(x8) + x6 + x5 + x 

                       = x2(x4 + x3 + x + 1) + x6 + x5 + x 

                       = x6 + x5 + x3 + x2 + x6 + x5 + x 

                       = x3 + x2 + x 



AES Mix Columns, S-Box 

The manner in which mix columns works is that when we specify a multiplication, such as 

03 x D8, we are really multiplying two polynomials in the field GF(28) with the polynomial 

m(x) = x8 + x4 + x3 + x + 1. One other note: this polynomial is irreducible. This means that 

there are no polynomials a(x) and b(x), each of degree 1 or greater, that multiply to m(x) 

using mod 2 for the coefficients. 

 

An example of a reducible polynomial from a previous example is 

x7 + x3 + x2 = (x4 + x3 + x)(x3 + x2 + 1) = x2(x5 + x + 1) 

 

Note that for this particular polynomial, there are multiple ways to express it as the product 

of two polynomials of degree 1 or greater. I’ve included a second, more obvious example 

at the right side of the equation. 

 

When working the mix columns step forward, we never have to multiply by any polynomial 

greater than x+1. This means that no term gets created greater than x8. Thus, the “quick 

fix” we discussed earlier (replacing x8 with x4+x3+x+1, or 00011011) suffices to be able to 

make all necessary calculations. 

 

The corresponding decryption matrix however, has terms such as 0E, 0B, 0D and 09. Thus, 

doing these by hand would necessitate a slightly better understanding of multiplication in 

the field. But, the iterative trick shown previously (writing x10 as x2x8, and then doing our 

substitution for x8) will suffice eventually. 

 

The S-Box is constructed as follows, as a matrix multiplication (looking at values mod 2) 

followed by an addition: 

 

[
 
 
 
 
 
 
 
𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 0
1 1

0 0
0 0

1 1
1 1

1 0
1 1

1 1
0 1

1 1
1 1

0 0
0 0

1 1
0 1

1 1
0 1

1 1
1 1

0 0
0 0

1 1
0 1

1 0
1 1

0 0
0 0

1 1
1 1

1 0
1 1]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0

𝑎1

𝑎2
𝑎3

𝑎4

𝑎5
𝑎6

𝑎7]
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

 

 

Let the input to the X-Box be x7x6…x0, in bits from most to least significant. First, we find 

the inverse of be x7x6…x0 in the field GF(28) mod m(x). Assign this inverse the value 

a7a6…a0. Then, multiply this stored in the column (in reverse as shown above) by the matrix 

shown, then add the corresponding column matrix shown. This computation is how the S-

Box for AES is constructed. 

 

As a quick example, consider the entry for {01}. The inverse of 1 in the field is 1, so we 

can store a0 = 1 a1 = 0, a2 = 0, … a7 = 0. When we do the matrix multiply, we get 1’s for 

the first 5 entries and 3 zeros. When we add to 11000110, we get 00111110, which, when 

read in reverse is 0111 1100, or 7C, which is the entry in row 0, column 1, of the S-box. 


