
COP 4516 Spring 2022 Week 15 Final Team Contest Solution Sketches 
 
Problem A: How Many Pieces of Candy? 

The key observation here is that you are forced to buy candy at each store. So, at a minimum, you 

must get ai pieces from store i. Let X equal the sum of the ai’s. The only choice you have each 

store is whether or not to upgrade to the large pack and get bi candies instead. This upgrade can be 

seen as adding bi - ai candies to the base starting point of X candies. In some sense, for each store 

i, we can choose to either add bi - ai candies, or not to. This is exactly the subset sum problem. 

Thus, this problem maps to the following: given the set of values bi - ai, for each store, calculate 

the number of unique sums of subsets that can be obtained. 

 

To solve the problem, run the subset sum or knapsack DP algorithm (subset sum is the knapsack 

problem where the weights are equal to the values) and look at the number of unique sums for 

which there exist subsets. 

 

 

Problem B: The King’s Escape 

The method of solving this problem is clear: breadth first search. The difficulty is in the 

implementation. With 5 pieces with 5 different rules of movement, many may try writing five 

separate functions/pieces of code to mark illegal squares that are blocked by the black pieces. 

Though each individual piece is straight-forward, it’s likely some bug will be introduced into the 

code if separate code is written. Complicating the matter is blocked pieces. If one black piece, B, 

gets in the way of another, A, then “future” squares A would block are not blocked. 

 

To ease implementation, DX/DY arrays are recommended. In marking blocked squares, start at a 

black piece in question and loop through each of its directions of movement. For each direction of 

movement, step out 0 steps, 1 step, 2 steps, etc. Keep going until either (a) Your piece can only 

move once so you stop after 1 step, (b) You hit another piece, (c) You go out of bounds. 

 

Once the blocked squares are marked, then just run a straight BFS on the adjusted grid to the top 

row. 

 

 

Problem C: Flowers 

This is the easiest problem in the set. For each team, calculate the number of packs of flowers 

needed (ceiling(problems/packsize)), taking care to use integer division appropriately. Then 

multiply the number of packs by the price and this is the cost for each team. Add up all the team 

costs and voila! 

 

 

  



Problem D: Fractorial 

The small version can be solved easily by calculating all the factorials to 19 and then trying to 

divide each of them in order by ab. As long as longs are used, no overflow will occur using this 

straight-forward process since each answer is guaranteed to be less than 20. 

 

For the large version, we have to recall that the number of times that a prime p divides evenly into 

n! is ∑ ⌊
𝑛

𝑝𝑖
⌋∞

𝑖=1 . Thus, the answer is greater than or equal to ⌊𝑛 𝑝⁄ ⌋. Unfortunately, we don’t know n 

in this problem. Notice that the structure of the problem is as follows: it’s easy if we know n, but 

unclear how to solve for n given p and its exponent. One final note is that as n increases, the 

exponent of p increases. These are all the hallmarks of binary search (a function that moves in one 

direction and is easy to calculate one way, but the inverse is hard). Thus, the idea is to binary 

search the value of n for each prime p in the prime factorization of ab. 

 

Step 1: prime factorize a. The exponents of the prime factorization of ab are just b times the 

exponents in the prime factorization of a. 

 

Step 2: For each prime p in the prime factorization of ab, let k be its exponent. Binary search the 

minimum value of n such that n! is divisible by pk. Then, just take the maximum of each of the 

bounds over all unique primes p in the prime factorization of ab. 

 

 

Problem E: Frogger 

This problem is easier than it could be because all of the cars move horizontally. Thus, it’s fairly 

easy to calculate the time when Kermit might intersect a car. If Kermit’s velocity is v and his angle 

of movement is θ, then he moves vsinθ in one unit of time. It follows that if he’s going to intersect 

a car with y value of y, it will happen at time t = y/(vsinθ). His x-coordinate at this time is x = 

t(vcosθ). Finally, we just want to know at what time the front of the car passes this point and the 

back of the car passes this point. We can calculate this by looking at the signed distance the car 

must travel to get to the point from its starting point and dividing by its velocity. If the time Kermit 

gets there is in between, there is a collision between him at this car. If not, there isn’t a collision. 

Kermit makes it if he doesn’t collide with ANY car. 

 

 

Problem F: Trilots 

For the small data, running the permutation algorithm on n = 9 points suffices. Try each 

permutation. For each permutation group together the first three points, the next three points and 

the last three points and add up twice the triangle areas of each (via cross product magnitude 

calculation). 

 

For the large data, we must realize that the permutation solution redundantly tries the same set of 

triangles many times. For n = 15, it suffices to try each set of triangles once. We can do this by 

picking all 3 points of our triangle at once and forcing ourselves to always choose the smallest 

unchosen point and pairing it with any two other unchosen points. This amounts to a double for 

loop for selecting the last 2 points for each triangle. For each unique set, calculate the desired sum 

of twice the area and output the minimum value. 


