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We present a survey of research into automated and semiautomated computer systems for expressive per-

formance of music. We will examine the motivation for such systems and then examine the majority of the

systems developed over the last 25 years. To highlight some of the possible future directions for new research,

the review uses primary terms of reference based on four elements: testing status, expressive representation,

polyphonic ability, and performance creativity.
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1. INTRODUCTION

In the early 1980s the seeds of a problem were sown as a result of synthesizers being de-
veloped and sold with built-in sequencers. The introduction of MIDI into this equation
led to an explosion in the use of sequencers and computers, thanks to the new potential
for connection and synchronization. These computers and sequencers performed their
stored tunes in perfect metronomic time, a performance which sounded robotic. They
sounded robotic because human performers normally perform expressively—for exam-
ple, speeding up and slowing down while playing, and changing how loudly they play.
The performers’ changes in tempo and dynamics allow them to express a fixed score—
hence the term expressive performance [Widmer and Goebl 2004]. However, rather than
looking for ways to give the music performances more humanlike expression, pop per-
formers developed new types of music, such as synth-pop and dance music, that actually
utilized this metronomic perfection to generate robotic performances.
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Outside of pop, the uptake of sequencers for performance (as opposed to for compo-
sition) was less enthusiastic, and except for occasional novelties like Snowflakes Are
Dancing by Tomita [Kajanová 2002], computer performance of classical music was a
rarity. Computer composition of classical music had been around since 1957 when The
Illiac Suite for String Quartet—the first published composition by a computer—was
published by Lejaren Hiller [Hiller and Isaacson 1959]. Since then there has been a
large body of such music and research published, with many successful systems pro-
duced for automated and semiautomated computer composition [Buxton 1977; Roads
1996; Miranda 2001]. But publications on computer expressive performance of music
lagged behind composition by almost quarter of a century. During the period when MIDI
and computer use exploded among pop performers, and up to 1987—when Yamaha re-
leased its first Disklavier MIDI piano—there were only two or three researchers pub-
lishing on algorithms for the expressive performance of music [Todd 1985; Sundberg
et al. 1983]. However, from the end of the 1980s on there was an increasing interest
in automated and semiautomated computer systems for expressive music performance
(CSEMPs). A CSEMP is a computer system able to generate expressive performances
of music. For example, software for music typesetting will often be used to write a piece
of music, but some packages play back the music in a relatively robotic way, and the
addition of a CSEMP enables a more realistic playback. Or an MP3 player could in-
clude a CSEMP which would allow performances of music to be adjusted to different
performance styles.

In this article we will review the majority of research on automated and semiau-
tomated CSEMPs. By automated, we refer to the ability of the system—once setup
or trained—to generate a performance of a new piece, not seen before by the system,
without manual intervention. Some automated systems may require manual setup,
but then can be presented with multiple pieces which will be played autonomously. A
semiautomated system is one which requires some manual input from the user (for
example, a musicological analysis) to deal with a new piece.

1.1. Human Expressive Performance

How do humans make their performances sound so different to the so-called “perfect”
performance a computer would give? In this article the strategies and changes which
are not marked in a score but which performers apply to the music will be referred to
as expressive performance actions. Two of the most common performance actions are
changing the tempo and the loudness of the piece as it is played. These should not be
confused with the tempo or loudness changes marked in the score, like accelerando or
mezzo-forte, but to additional tempo and loudness changes not marked in the score. For
example, a common expressive performance strategy is for the performer to slow down
as he or she approaches the end of the piece [Friberg and Sundberg 1999]. Another
performance action is the use of expressive articulation—when a performer chooses to
play notes in a more staccato (short and pronounced) or legato (smooth) way. Those
playing instruments with continuous tuning, for example, string players, may also use
expressive intonation, making notes slightly sharper or flatter; and such instruments
also allow for expressive vibrato. Many instruments provide the ability to expressively
change timbre as well.

Why do humans add these expressive performance actions when playing music? We
will set the context for answering this question using a historical perspective. Pianist
and musicologist Ian Pace has offered up the following as a familiar historical model
for the development of notation (though he suggests that overall it constitutes an over-
simplification) [Pace 2009, pp. 151–152]:
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In the Middle Ages and to a lesser extent the Renaissance, musical scores provided only a bare outline of

the music, with much to be filled in by the performer or performers, freely improvising within conventions

which were essentially communicated verbally within a region or locality. By the Baroque Era, composers

began to be more specific in terms of requirements for pitch, rhythm and articulation, though it was still

common for performers to apply embellishments and diminutions to the notated scores, and during

the Classical Period a greater range of specificity was introduced for dynamics and accentuation. All

of this reflected a gradual increase in the internationalism of music, with composers and performers

travelling more widely and thus rendering the necessity for greater notational clarity as knowledge

of local performance conventions could no longer be taken for granted. From Beethoven onwards, the

composer took on a new role, less a servant composing to occasion at the behest of his or her feudal

masters, more a freelance entrepreneur who followed his own desires, wishes and convictions, and wrote

for posterity, hence bequeathing the notion of the master-work which had a more palpable autonomous

existence over and above its various manifestations in performance. This required an even greater degree

of notational exactitude; for example in the realms of tempo, where generic Italianate conventions were

both rendered in the composer’s native language and finely nuanced by qualifying clauses and adjectives.

Through the course of the nineteenth century, tempo modifications were also entered more frequently

into scores, and with the advent of a greater emphasis on timbre, scores gradually became more specific

in terms of the indication of instrumentation. Performers phased out the processes of embellishment

and ornamentation as the score came to attain more of the status of a sacred object. In the twentieth

century, this process was extended much further, with the finest nuances of inflection, rubato, rhythmic

modification coming to be indicated in the score. By the time of the music of Brian Ferneyhough, to take

the most extreme example, all minutest details of every parameter are etched into the score, and the

performer’s task is simply to try and execute these as precisely as he or she can.

So in pre-20th-century music there was a tradition of performers making additions to
a performance which were not marked in the score (though the reason Pace called this
history an oversimplification is that modern music does have the capacity for expressive
performance, as we will discuss later).

A number of studies have been done on this pre-20th-century (specifically Baroque,
Classical, and Romantic) music performance. The earliest studies began with Seashore
[1938], and good overviews include Palmer [1997] and Gabrielsson [2003]. One element
of these studies has been to discover what aspects of a piece of music—what musical
features—are related to a performer’s use of expressive performance actions. One of
these musical features expressed is the performer’s structural interpretation of the
piece [Palmer 1997]. A piece of music has a number of levels of meaning—a hierar-
chy. Notes make up motifs, motifs make up phrases, phrases make up sections, sections
make up a piece (in more continuous instruments there are intranote elements as well).
Each element—note, motif, etc.—plays a role in other, higher elements. Human per-
formers have been shown to express this hierarchical structure in their performances.
Performers have a tendency to slow down at boundaries in the hierarchy—with the
amount of slowing down being correlated to the importance of the boundary [Clarke
1998]. Thus a performer would tend to slow more at a boundary between sections
than between phrases. There are also regularities relating to other musical features
in performers’ expressive strategies. For example, in some cases the musical feature
of higher-pitched notes causes a performance action of the notes being played more
loudly; also notes which introduce melodic tension relative to the key may be played
more loudly. However, for every rule there will always be exceptions.

Another factor influencing expressive performance actions is performance context.
Performers may wish to express a certain mood or emotion (e.g., sadness, happiness)
through a piece of music. Performers have been shown to change the tempo and dynam-
ics of a piece when asked to express an emotion as they play it [Gabrielsson and Juslin
1996]. For a discussion of other factors involved in human expressive performance, we
refer the reader to Juslin [2003].
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1.2. Computer Expressive Performance

Having examined human expressive performance, the question now becomes why we
should want computers to perform music expressively. There are at least five answers
to this question:

(1) Investigating human expressive performance by developing computational models.
Expressive performance is a fertile area for investigating musicology and human
psychology [Seashore 1938; Palmer 1997; Gabrielsson 2003]. As an alternative to
experimentation with human performers, models can be built which attempt to
simulate elements of human expressive performance. As in all mathematical and
computational modeling, the model itself can give the researcher greater insight
into the mechanisms inherent in that which is being modeled.

(2) Realistic playback on a music typesetting or composing tool. There are many com-
puter tools available now for music typesetting and for composing. If these tools play
back the compositions with expression on the computer, the composer will have a
better idea of what the final piece will sound like. For example, Sibelius, Notion,
and Finale have some ability for expressive playback.

(3) Playing computer-generated music expressively. There are a number of algorithmic
composition systems that output music without expressive performance but which
audiences would normally expect to hear played expressively. These compositions in
their raw form will play on a computer in a robotic way. A CSEMP would allow the
output of an algorithmic composition system to be played directly on the computer
which composed it (for example, in a computer game which generates mood music
based on what is happening in the game).

(4) Playing data files. A large number of nonexpressive data files in formats like MIDI
and MusicXML [Good 2001] are available on the Internet, and they are used by
many musicians as a standard communication tool for ideas and pieces. Without
CSEMPs, most of these files will play back on a computer in an unattractive way,
whereas the use of a CSEMP would make such files much more useful.

(5) Computer accompaniment tasks. It can be costly for a musician to play in ensem-
ble. Musicians can practice by playing along with recordings with their solo parts
stripped out. But some may find it too restrictive since such recordings cannot dy-
namically follow the expressiveness in the soloist’s performance. These soloists may
prefer to play along with an interactive accompaniment system that not only tracks
their expression but also generates its own expression.

2. A GENERIC FRAMEWORK FOR PREVIOUS RESEARCH IN COMPUTER
EXPRESSIVE PERFORMANCE

Figure 1 shows a generic model for the framework that most (but not all) previous
research into automated and semiautomated CSEMPs tends to have followed. The
modules of this diagram are described in the main text.

—Performance knowledge. This is the core of any performance system. It is the set of
rules or associations that controls the performance action. It is the “expertise” of
the system which contains the ability, implicit or explicit, to generate an expressive
performance. This may be in the form of an artificial neural network, a set of cases
in a case-based reasoning system, or a set of linear equations with coefficients. To
produce performance actions, this module uses its programmed knowledge together
with any inputs concerning the particular performance. Its main input is the music/
analysis module. Its output is a representation of the performance of the musical
input, including expressive performance actions.
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Fig. 1. Generic model for most current CSEMPs.

—Music/Analysis. The music/analysis module has two functions. First of all, in all sys-
tems, it has the function of inputting the music to be played expressively (whether
in paper score, MIDI, MusicXML, audio, or other forms) into the system. The input
process can be quite complex; for example, paper score or audio input will require
some form of analytical recognition of musical events. This module is the only input
to the performance knowledge module that defines the particular piece of music to be
played. In some systems, it also has a second function—to provide an analysis of the
musical structure. This analysis provides information about the music features of
the music—for example, metrical, melodic, or harmonic structure. (It was mentioned
earlier how it has been shown that such structures have a large influence on expres-
sive performance in humans.) This analysis can then be used by the performance
knowledge system to decide how the piece should be performed. Analysis methods
used in some of the systems include Lerdahl and Jackendoff ’s [1983] Generative The-
ory of Tonal Music, Narmour’s [1990] Implication Realization, and various bespoken
musical measurements. The analysis may be automated, manual, or a combination
of the two.

—Performance context. Another element which will effect how a piece of music is played
is the performance context. This includes such things as how the performer decides
to play a piece, for example, happy, perky, sad, or lovelorn. It can also include whether
the piece is played in a particular style, for example, baroque or romantic.

—Adaptation process. The adaptation process is the method used to develop the per-
formance knowledge. Like the analysis module, this can be automated, manual, or a
combination of the two. In some systems, a human expert listens to the actual musical
output of the performance system and decides if it is appropriate. If not, the perfor-
mance knowledge can be adjusted to try to improve the musical output performance.
This is the reason that in Figure 1 there is a line going from the sound module back
to the adaptation procedure module. The adaptation procedure also has inputs from
performance context, music/analysis, instrument model, and performance examples.
All four of these elements can influence the way that a human performs a piece of
music, though the most commonly used is music/analysis and performance examples.

—Performance examples. One important element that can be incorporated into the per-
formance knowledge building is the experience of past human performances. These
examples can be used by the adaptation procedure to analyze when and how perfor-
mance actions are added to a piece of music by human performers. The examples may
be a database of marked-up audio recordings, MIDI files together with their source
scores, or (in the manual case) a person’s experience of music performance.
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—Instrument model. By far the most common instrument used in computer-generated
performance research is the piano. This is because it allows experiments with many
aspects of expression, but requires only a very simple instrument model. In fact the
instrument model used for the piano is often just the MIDI/media player and sound-
card in a PC. Alternatively it may be something more complex but still not part of
the simulation system, for example a Yamaha Disklavier. However, a few simula-
tion systems use nonkeyboard instruments, for example, saxophone and trumpet. In
these cases the issue of a performance is more than just expressiveness. Just simu-
lating a humanlike performance, even if it is nonexpressive, on these instruments is
nontrivial. So systems simulating expressive performance on such instruments may
require a relatively complex instrument model in addition to expressive performance
elements.

2.1. Modules of Systems Reviewed

Table I lists the systems reviewed and the sections they are reviewed in, together with
information about their modules. This information will be explained in detail in the
main text. Note that the column for Instrument Model is also used for CSEMPs without
an explicit instrument model, so as to show their applicability to various instruments.
A number of abbreviations are used in Table I and throughout the article. Table II lists
these abbreviations and their meaning.

Before discussing the primary terms of reference for this review, it should be observed
that the issue of evaluation of CSEMPs is an open problem. How does one evaluate what
is essentially a subjective process? If the CSEMP is trying to simulate a particular
performance, then correlation tests can be done. However, even if the correlations are
low for a generated performance, it is logically possible for the generated performance
to be more preferable to some people than the original performance. Papadopoulos and
Wiggins [1999] discussed the evaluation issue in a different but closely related area—
computer algorithmic composition systems. They listed four points that they saw as
problematic in relation to such composition systems:

(1) The lack of evaluation by experts, for example, professional musicians.

(2) Evaluation is a relatively small part of the research with respect to the length of
the research article.

(3) Many systems only generate melodies. How do we evaluate the music without a
harmonic context? Most melodies will sound acceptable in some context or other.

(4) Most of the systems deal with computer composition as a problem-solving task
rather as a creative and meaningful process.

All of these four points are issues in the context of computer systems for expressive
performance as well. So from these observations, three of the primary terms of reference
are extracted for this review. The three primary terms of reference extracted from points
1–4 are performance testing status (points 1 and 2), polyphonic ability (point 3), and
performance creativity (point 4). These first three dimensions will now be examined,
and then the fourth primary term of reference will be introduced.

2.2. Primary Terms of Reference for Systems Reviewed

Performance testing status refers to how and to what extent the system has been tested.
It is important to emphasise that testing status is not a measure of how successful the
testing was, but how extensive it was. There are three main approaches to CSEMP
testing: (a) trying to simulate a particular human performance or an average of human
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Table II. Abbreviations Used in Table I and Throughout Article
A Articulation

ANN Artificial neural network

BBN Bayesian belief network

CBR Case-based reasoning

CSEMP Computer system for expressive music performance

D Dynamics

DM Director Musices (KTH System)

EC Evolutionary computing

GA Genetic algorithm

GP Genetic programming

GPR Gaussian process regression

GTTM Lerdahl and Jackendoff ’s Generative Theory of Tonal Music

GUI Graphical user interface

HMM Hidden Markov Model

IBL Instance-based learning

IR Narmour’s Implication/Realization Theory of Melody

K Attack

KCCA Kernel canonical correlation analysis

kNN k-Nearest neighbor

KRR Kernel ridge regression

LBDM Local Boundary Detection Model of Cambouropoulos

MAS Multiagent system

CMERS Computational Music Emotion Rule System by Livingstone et al.

MIDI Musical Intrument Digital Interface

MIMACS Memetics-inspired multiagent composition system

MusicXML Music Extensible Markup Language

MIS Music Intepretation System by Katayose et al.

N Note addition/consolidation

P Pitch

PCA Principal component analysis

T Tempo

TSR Time span reduction technique (from GTTM)

V Vibrato

performances, (b) trying to create a performance which does not sound machinelike,
and (c) trying to create as aesthetically pleasing a performance as possible. For the first
of these, a correlation can be done between the computer performance and the desired
target performance/performances. (However, this will not be a “perceptually weighted”
correlation; errors may have a greater aesthetic/perceptual effect at some points than
at others.) For approaches (b) and (c) we have listening tests by experts and nonexperts.
A wide variety of listening tests are used in CSEMPs, from the totally informal and
hardly reported, to the results of formal competitions.

Each year since 2002 a formal competition, which has been described as a “musical
Turing Test,” called the RenCon (Contest for Performance Rendering Systems) Work-
shop, has been held [Hiraga et al. 2004]. About a third of the systems we will review
have been entered into a RenCon competition—see Table III for the results. RenCon
is a primarily piano-based competition for baroque, classical and romantic music, and
includes manual as well as automated systems (though the placings in Table III are
displayed relative to automated and semi-automated CSEMPS, ignoring the manual
submissions to RenCon). Performances are graded and voted on by a jury of attendees
from the sponsoring conference. Scores are given for “humanness,” and “expressive-
ness,” giving an overall “preference” score. It is the preference score we will focus on
in the review. The size of RenCon juries and their criteria have varied over time. In
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Table III. RenCon Placings of CSEMPS in This Article
CSEMP RenCon Placings

Director Musices 2002 (4th), 2004 compulsory (1st) , 2005 compulsory (2nd)

SuperConductor (includes Composer 2004 open (1st), 2006 open (1st and 4th)

Pulse)

Rubato 2004 open (4th)

MIS 2002 (2nd)

Music Plus One 2003 (1st)

Kagurame 2002 (6th), 2004 compulsory (3rd), 2006 compulsory (2nd)

Ha-Hi-Hun 2002 (5th), 2004 compulsory (4th), 2006 compulsory (3rd)

DISTALL 2002 (1st)

Pop-E 2005 compulsory (1st), 2006 compulsory (1st), 2006 open
(2nd and 3rd)

previous years (apart from its first year—2002) RenCon did not have a separate au-
tonomous section—it had two sections: compulsory and open, where compulsory was
limited to a fixed piano piece for all contestants, and open was open to all instruments
and pieces. In these competitions, automated CSEMPs went up against human pianists
and renditions which were carefully crafted by human hand. Thus many past RenCon
results were not the ideal evaluation for automated and semiautomated CSEMPs. How-
ever, they are the only published common forum available, so in the spirit of points (1)
and (2) from Papadopoulos and Wiggins [1999], they will be referred to where possible
in our review.

From 2008 on, the competition has had three sections: an “autonomous” section, a
“type-in” section, and the open section. The autonomous section aims to only evalu-
ate performances generated by automated CSEMPs. Performances are graded by the
composer of the test pieces as well as by a jury. For the autonomous section, the 2008
RenCon contestants were presented with two 1-min pieces of unseen music: one in the
style of Chopin and one in the style of Mozart. An award was presented for the highest
scored performance and for the performance most preferred by the composer of the
two test pieces. The type-in section is for computer systems for manually generating
expressive performance.

The second term of reference is polyphonic ability, and refers to the ability of a CSEMP
to generate expressive performances of a nonmonophonic piece of music. Monophonic
music has only one note playing at a time, whereas nonmonophonic music can have mul-
tiple notes playing at the same time—for example, piano chords with a melody or a four-
part string quartet. Many CSEMPs take monophonic inputs and generate monophonic
expression; for example, SaxEx [Arcos and de Mantaras 2001] focuses on a single mono-
phonic instrument—the saxophone. However, as will be seen, there are also systems
like the ESP Piano System [Grindlay 2005] and Pop-E [Hashida et al. 2006] that are
designed explicitly to work with nonmonophonic music. To understand why polyphonic
expression is more complex than monophonic expression, consider that each voice of an
ensemble may have its own melodic structure. Many monophonic methods described in
our survey, if applied separately to each part of a nonmonophonic performance, could
lead to parts having their own expressive timing deviations. This would cause an un-
synchronised and unattractive performance [Friberg et al. 2006]. Polyphonic ability is
an important issue for CSEMP research because—although a significant percentage of
CSEMP work has focused on monophonic expression—most music is not monophonic.

The third term of reference in this review, performance creativity, refers to the ability
of the system to generate novel and original performances, as opposed to simulating
previous human strategies. For example, the Artificial Neural Network Piano system
[Bresin 1998] was designed to simulate human performances (an important research
goal), but not to create novel performances, whereas a system like Director Musices
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[Friberg et al. 2006], although also designed to capture human performance strategies,
has a parameterization ability which can be creatively manipulated to generate entirely
novel performances. There is an important proviso here—a system which is totally man-
ual would seem at first glance to have a high creativity potential, since the user could
entirely shape every element of the performance. However, this potential may never
be realized due to the manual effort required to implement the performance. Not all
systems are able to act in a novel and practically controllable way. Many of the systems
generate a model of performance which is basically a vector or matrix of coefficients.
Changing this matrix by hand (“hacking it”) would allow the technically knowledge-
able to creatively generate novel performances. However the changes could require too
much effort, or the results of such changes could be too unpredictable (thus requiring
too many iterations or “try-outs”). So performance creativity includes the ability of a
system to produce novel performances with a reasonable amount of effort. Having said
that, simple controllability is not the whole of performance creativity; for example,
there could be a CSEMP that has only three basic performances rules which can be
switched on and off with a mouse click and the new performance played immediately.
However, the results of switching off and on the rules would in all likelihood generate
a very uninteresting performance.

So, for performance creativity, a balance needs to exist between automation and cre-
ative flexibility, since in this review we are only concerned with automated and semiau-
tomated CSEMPs. An example of such a balance would be an almost totally automated
CSEMP, but with a manageable number of parameters that can be user adjusted before
activating the CSEMP for performance. After activating the CSEMP, a performance is
autonomously generated but is only partially constrained by attempting to match past
human performances. Such a creative and novel performance is often applauded in
human performers. For example Glenn Gould created highly novel expressive perfor-
mances of pieces of music and has been described as having a vivid musical imagination
[Church 2004]. Expressive computer performance provides possibilities for even more
imaginative experimentation with performance strategies.

We will now add a fourth and final dimension to the primary terms of reference
which—like the other three—also has parallels in algorithmic composition. Different
algorithmic composition systems generate music with different levels of structural
sophistication—for example, some may just work on the note-to-note level, like that
proposed by Kirke and Miranda [2007a], whereas others may be able to plan at the
higher structure level, generating forms like ABCBA, for example, Anders [2007]. There
is an equivalent function in computer systems for expressive performance: expressive
representation. Expressive representation is the level of sophistication in the CSEMP’s
representation of the score as it pertains to expressive performance actions. We have
already mentioned the importance of the music’s structure to a human expressive per-
formance. A piece of music can be analyzed with greater and greater levels of complex-
ity. At its simplest, it can be viewed a few notes at a time, or, from the point of view of
melody only. At its most complex, the harmonic and hierarchical structure of the score
can be analyzed—as is done in Widmer’s DISTALL system [Widmer 2003; Widmer and
Tobudic 2003]. The greater the expressive representation of a CSEMP, the more of the
music features it can potentially express.

So to summarize, our four primary terms of reference are as follows:

—testing status,

—expressive representation,

—polyphonic ability, and

—performance creativity.
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At some point in the description of each system, these points will be implicitly or explic-
itly addressed, and are summarized at the end of the article (see Table V). It is worth
noting that these are not an attempt to measure how successful the system is overall,
but an attempt to highlight some key issues which will help to show potential direc-
tions for future research. What now follows is the actual descriptions of the CSEMPs,
divided into a number of groups.

3. A SURVEY OF COMPUTER SYSTEMS FOR EXPRESSIVE MUSIC PERFORMANCE

The review presented here is meant to be representative rather than exhaustive but
will cover the majority of published automated and semiautomated CSEMP systems
to date. Each CSEMP is grouped according to how their performance knowledge is
built—that is, by learning method. This provides a manageable division of the field,
shows which learning methods are most popular, and shows where there is room for
development in the building of performance knowledge models. The grouping will be
as follows:

(1) nonlearning (10 systems),

(2) linear regression (two systems),

(3) artificial neural networks (two systems),

(4) rule/case-based learning (six systems),

(5) statistical graphical models (two systems),

(6) other regression methods (two systems), and

(7) evolutionary computation (six systems),

The ordering of this grouping is by average year of CSEMP references within the group-
ing, so as to help highlight trends in approaches to generating performance knowledge.
For example, most early CSEMPs were nonlearning, and most evolutionary computa-
tion CSEMPs have only been developed in the last few years. The fourth grouping—
rule/case-based learning—is in the middle because it has been used throughout the
history of CSEMP research.

3.1. Nonlearning Systems

3.1.1. Director Musices. Director Musices (DM) [Sundberg et al. 1983; Friberg et al.
2006] has been an ongoing project since 1982. Researchers including violinist Lars
Fryden developed and tested performance rules using an analysis-by-synthesis method
(later using analysis-by-measurement and studying actual performances). Currently
there are around 30 rules which are written as relatively simple equations that take as
input music features such as height of the current note pitch, the pitch of the current
note relative to the key of the piece, or whether the current note is the first or last
note of the phrase. The output of the equations defines the performance actions. For
example, the higher the pitch, the louder the note is played, or during an upward run
of notes, the piece is played faster. Another DM rule is phrase arch, which defines a
“rainbow” shape curve of tempo and dynamics over a note grouping, such as a phrase.
The performance speeds up and gets louder toward the center of a note grouping and
tails off again in tempo and dynamics toward the end of the grouping. The curves are
generated at each level of the hierarchy, from the phrase level upward (Figure 2) and
added to get the performance. This rule gives DM a higher expressive representation.

Each rule’s equation has a numeric ‘k-value’—the higher the k-value the more effect
the rule will have, and a k-value of zero switches the rule off. The results of the equa-
tions are added together linearly to get the final performance. Thanks to the adjustable
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Performance Curves 

Note Groupings at 2 Levels 

Fig. 2. Applying phrase arch tempo curves to multiple levels of the hierarchy.

k-value system, DM has much potential for performance creativity. Little work has been
reported on an active search for novel performances, though it is reported that negative
k-values reverse rule effects and cause unusual performances. DM’s ability as a semiau-
tomated system comes from the fact that it has a “default” set of k-values, allowing the
same rule settings to be applied automatically to different pieces of music (though not
necessarily with the same success). However some manual score analysis is required—
for example, harmonic analysis and marking up of note group starts and ends.

Rules are also included for dealing with nonmonophonic music [Friberg et al. 2006].
The Melodic-sync rule generates a new voice consisting of all timings in all other voices
(if two voices have simultaneous notes, Then the note with the greatest melodic tension
is selected). Then all rules are applied to this synchronization voice, and resulting
durations are mapped back onto the original voices. The bar-sync rule can also be
applied to make all voices resynchronize at each bar end.

DM is also able to deal with some performance contexts, specifically emotional ex-
pression [Bresin and Friberg 2000], drawing on work by Gabrielsson and Juslin [1996].
Listening experiments were used to define the k-value settings on the DM rules for
expressing emotions. The music used was a Swedish nursery rhyme and a computer-
generated piece in a minor mode written using Cope’s [1992] algorithmic composition
system in the musical style of Chopin. Six rules were used from DM to generate multi-
ple performances of each piece. Subjects were asked to identify a performance emotion
from the list of fear, anger, happiness, sadness, solemnity, tenderness, or, no expression.
As a result, parameters were found for each of the six rules which mould the emotional
expression of a piece. For example, for “tenderness” interonset interval was lengthened
by 30%, sound level reduced by 6 dB, and two other rules were used: the final ritardando
rule (slowing down at the end of a piece) and the duration contrast rule (if two adjacent
notes have contrasting durations, increase this contrast).

The most recent development in Director Musices has been the real-time generation
of performances using a version of the system called pDM [Friberg 2006]. pDM es-
sentially acts as an expressive sequencer, allowing the adjustment of rule parameters
during playback and the live incorporation of the changes as the playback continues.
Unlike pDM, many CSEMPs in this survey receive the inputs and parameters and the
whole piece of music, process the data, and, when this processing is complete, generate
a performance available to the user. They are not designed for real-time usage.

Director Musices has a good test status, having been evaluated in a number of exper-
iments. In Friberg [1995], k-values were adjusted by a search algorithm, based on 28
human performances of nine bars of of Schumann’s Träumerei. A good correlation was
found between the human performances and the resulting DM performance. Another
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experiment involved manually fitting to one human performance the first 20 bars of the
Adagio in Mozart’s sonata K.332 Sundberg et al. [2003]. The correlations were found
to be low, unless the k-values were allowed to change dynamically when the piece was
performed. An attempt was made to fit k-values to a larger corpus of piano music using
genetic algorithms [Kroiss 2000], and the results were found to give a low correlation as
well. In an attempt to overcome this, Zanon and de Poli [2003] allowed k-values to vary
in a controlled way over a piece of music. This was tested on Beethoven’s Sonatine in
G Major and Mozart’s K.332 piano sonata (the slow movement)—but the results were
found to be poor for the Beethoven. In the first RenCon in 2002, the second prize went to
a DM-generated performance; however, the first-place system (a manually generated
performance) was voted for by 80% of the jury. In RenCon 2005, a Director Musices
default-settings (i.e., automated) performance of Mozart’s Minuette KV 1(1e) came in
a very close second in the competition, behind Pop-E (Section 3.1.7). However three of
the other four systems competing were versions of the DM system.

The DM model has been influential, and, as will be seen in the later systems, DM-type
rules appear repeatedly.

3.1.2. Hierarchical Parabola Model. Todd’s [1985; 1989; 1992; 1995] Hierarchical
Parabola Model is arguably consistent with a kinematic model of expressive perfor-
mance, where tempo changes are viewed as being due to accelerations and decelerations
in some internal process in the human mind/body, for example, the auditory system.
For tempo, this model uses a parabolic shape, similar to DM’s phrase arch rainbow
(though the Hierarchical Parabola Model pre-dates the hierarchical phrase arch rule).
This parabolic shape is consistent with Newtonian kinematics. For loudness, the model
uses a “the faster the louder” rule, creating a dynamics curve as well.

A key difference between DM’s phrase arch and this model is that the Hierarchical
Parabola Model analyzes multiple levels of the hierarchy using Lerdahl and Jackend-
off ’s [1983] Generative Theory of Tonal Music (GTTM). GTTM time span reduction
(TSR) examines each note’s musicological place in all hierarchical levels. The tempo
curves are then generated by a parameterized parabolic equation which takes as input
the result of the GTTM TSR analysis.

The performance has been shown to correlate well by eye with a short human per-
formance, but no correlation figures were reported. Clarke and Windsor [2000] tested
the first four bars of Mozart’s K.331, comparing two human performers with two per-
formances by the Hierarchical Parabola Model. Human listeners found the Parabola
version unsatisfactory compared to the human ones. In the same experiment, however,
the Parabola model was found to work well on another short melody. The testing also
showed that the idea of “the louder the faster” did not always hold. Desain and Honing
[1993] claimed that through informal listening tests in general the performances do
not sound convincing.

The constraint of utilizing the hierarchy and the GTTM TSR approach limits the per-
formance creativity. Note groupings will be limited to those generated by a GTTM TSR
analysis, and the parabolas generated will be constrained by the model’s equation. Any
adjustments to a performance will be constrained to working within this framework.

3.1.3. Composer Pulse and Predictive Amplitude Shaping. Manfred Clynes’ Composer
Pulse [Clynes 1986] also acts on multiple levels of the hierarchy. Clynes hypothesized
each composer has a unique pattern of amplitude and tempo variations running through
performances—a pulse. This is captured as a set of numbers multiplying tempo and
dynamic values in the score. It is hierarchical with separate values for within the beat,
the phrase, and at multiple bar levels. Table IV shows the values of pulses for phrase
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Table IV. Level 2 Composers’ Pulses Multipliers—4-Pulse
Beethoven Duration 106 89 96 111

Amplitude 1.00 0.39 0.83 0.81

Mozart Duration 105 95 105 95
Amplitude 1.00 0.21 0.53 0.23

Schubert Duration 97 114 98 90
Amplitude 1.00 0.65 0.40 0.75

Haydn Duration 108 94 97 102
Amplitude 1.00 0.42 0.68 1.02

Schumann Duration 96 116 86 102
Amplitude 0.60 0.95 0.50 1.17

Mendelssohn Duration 118 81 95 104
Amplitude 1.00 0.63 0.79 1.12

Fig. 3. Structure of a pulse set in three-time.

level for some composers. The pulses were measured using a sentograph to generate
pressure curves from musicians tapping their finger while thinking of or listening to
a specific composer. Figure 3 shows the structure of a pulse set in three-time (each
composer has a three-time and a four-time pulse set defined). This pulse set is repeat-
edly applied to a score end on end. So, if the pulse is 12 beats long and the score is 528
beats, the pulse will repeat 528/12 = 44 times end on end.

Another key element of Clynes’ approach is predictive amplitude shaping. This ad-
justs a note’s dynamic based on the next note simulating “a musician’s unconscious abil-
ity to sculpt notes in this way” that “makes his performance flow beautifully through
time, and gives it meaningful coherence even as the shape and duration of each in-
dividual note is unique.”1 A fixed envelope shape model is used (some constants are
manually defined by the user), the main inputs being distance to the next note and du-
ration of the current note. So the pulse/amplitude system has only note level expressive
representation.

Clynes’ test of his own model [Clynes 1995] showed that a number of expert and non-
expert listeners preferred music with a composer’s pulse rather than with a different
pulse. However, not all tests on Clynes’ approach have supported a universal pulse for
each composer [Thompson 1989; Repp 1990], suggesting instead that the pulse may be
effective for a subset of a composer’s work. Clynes’ pulses and amplitude shaping have
been combined with other performance tools (e.g., vibrato generation) as part of his
commercial software SuperConductor. Two SuperConductor-generated performances
were submitted to RenCon 2006’s open section: Beethoven’s Eroica symphony, Opus 55,
Movement 4, and Brahms’ Violin Concerto, Opus 77, Movement 1. The Beethoven piece
scored low, but the Brahms piece came first in the open section (beating two pieces sub-
mitted by Pop-E— see Section 3.1.7). The generation of this piece could have involved

1http://www.microsoundmusic.com/features.html.
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significant amounts of manual work. Also, because it was the open section, the pieces
submitted by Pop-E were not the same as those submitted by SuperConductor—hence,
like was not compared to like. SuperConductor also won the open section in RenCon
2004 with J. S. Bach’s, Brandenburg Concerto, Number 5, D major, third movement.
The only competitor included from this review was Rubato (Section 3.1.6) performing a
Bach piece. It should be reemphasized that these results were for SuperConductor and
not solely for the pulse and amplitude tools.

In the context of SuperConductor, Clynes’ approach allows for significant performance
creativity. The software was designed to allow a user to control the expressive shaping
of a MIDI performance, giving significant amounts of control. However, outside the con-
text of SuperConductor, the pulse has little scope for performance creativity—though
amplitude shaping does. The pulse and amplitude shaping do not explicitly address
nonmonophonic music, though SuperConductor can be used to generate polyphonic
performances.

3.1.4. Bach Fugue System. In the Bach Fugue System [Johnson 1991], expert system
methods are used to generate performance actions. Johnson generated the knowledge
base through interviews with two musical expert performers, and through a perfor-
mance practice manual and an annotated edition of the Well-Tempered Clavier; so this
system is not designed for performance creativity. Twenty-eight conditions for tempo
and articulation are so generated for the knowledge base. For example: “If there is any
group of 16th notes following a tied note, then slur the group of 16th notes following
the long note.” Expressive representation is focused on the note-to-phrase level. The
CSEMP does not perform itself, but generates instructions for 4/4 fugues. So testing
was limited to examining the instructions. It gave the same instructions as human
experts 85 to 90% of the time, though the article did not report how many tests were
run. The system works in the context of polyphony.

3.1.5. Trumpet Synthesis. The testing of three out of the last four CSEMPs reviewed
has focused on the keyboard. This pattern will continue throughout this article—most
CSEMPs focus on the piano because it is easier to collect and analyze data for the
piano than for other instruments. One of the first nonpiano systems was Dannenberg
and Derenyi’s Trumpet Synthesis [Dannenberg and Derenyi 1998; Dannenberg et al.
1998]. The authors’ primary interest was to generate realistic trumpet synthesis, and
adding performance factors improves this synthesis. The system was not designed for
performance creativity but for simulation. This trumpet system synthesizes the whole
trumpet performance, without needing any MIDI or audio building blocks as the basis
of its audio output. The performance actions are amplitude and frequency, and these
are controlled by envelope models developed using a semimanual statistical analysis-
by-synthesis method. A 10-parameter model was built for amplitude, based on elements
such as articulation, direction, and magnitude of pitch intervals, and duration of notes.
This system works by expressively transforming one note at a time, based on the pattern
of the surrounding two notes. In terms of expressive representation, the system works
on a three note width. The pitch expression is based on envelopes derived and stored
during the analysis-by-synthesis.

No test results have been reported. Dannenberg and Derenyi placed two accompanied
examples online: parts of a Haydn trumpet concerto and of a Handel minuet. The
start of the trumpet on the concerto without accompaniment is also online, together
with a human playing the same phrase. The nonaccompanied synthesis sounds quite
impressive, only being let down by a synthetic feel toward the end of the phrase—though
the note-to-note expression (as opposed to the synthesis) consistently avoids sounding
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machinelike. In both accompanied examples, it becomes clear as the performances goes
on that a machine is playing, particularly in faster passages. But once again note-to-
note expression does not sound too mechanical. Despite the reasonably positive nature
of these examples, there was no attempt to objectively qualify how good the Trumpet
Synthesis system is.

3.1.6. Rubato. G. Mazzola, a mathematician and recognized jazz pianist, developed a
mathematical theory of music [Mazzola 1994; 2002]. Music is represented in an abstract
geometrical space whose coordinates include onset time, pitch, and duration. A score
exists in this space, and expressive performances are generated by performing trans-
formations on the space. The basis of these transformations are a series of “operators”
which can be viewed as a very generalized version of the rule-based approach taken
in Director Musices. For example, the tempo operator and the split operator allow the
generation of tempo hierarchies. These give Rubato a good expressive representation.
However, the definition of the hierarchy here differs somewhat from that found in the
Hierachical Parabola Model (Section 3.1.2) or DISTALL (Section 3.4.6). A tempo hierar-
chy, for a piano performance, may mean that the tempo of the left hand is the dominant
tempo, at the top of a hierarchy, and the right-hand tempo is always relative to the left-
hand tempo—and so is viewed as being lower in the hierarchy. Mazzola also discussed
the use of tempo hierarchies to generate tempo for grace notes and arpeggios—the
tempo of these is relative to some global tempo higher in the hierarchy. Ideas from this
theory have been implemented in a piece of software called Rubato which is available
online. The expressive performance module in Rubato is the Performance Rubette. A
MIDI file can be loaded in Rubato and predefined operators used to generate expressive
performances. The user can also manually manipulate tempo curves using a mouse and
GUI, giving Rubato good scope for performance creativity.

Test reports are limited. In RenCon 2004, a performance of Bach’s Contrapunctus
III modeled using Rubato was submitted, and came in fourth in the open section (Su-
perConductor came in first in the section with a different piece). It is not clear how
automated the generation of the performance was. Listening to the submission, it can
be heard that, although the individual voices are quite expressive and pleasant (ex-
cept for the fastest parts), the combination sounds relatively unrealistic. An online
MIDI example is available of Schumann’s Kindersezenen Opus 15, Number 2, Kuriose
Geschichte, which evidences both tempo and dynamics expression and is quite impres-
sive, though once again it is not clear how automated the production of the music was.

3.1.7. Pop-E. Pop-E [Hashida et al. 2006], a polyphrase ensemble system, was devel-
oped by some of the team involved in MIS (Section 3.2.1). It applies expression features
separately to each voice in a MIDI file, through a synchronization algorithm. The mu-
sic analysis uses GTTM local-level rules, and utilizes beams and slurs in the score to
generate note groupings. So the expressive representation is up to the phrase level. Ex-
pressive actions are applied to these groupings through rules reminiscent of Director
Musices. The five performance rules have a total of nine manual parameters between
them. These parameters can be adjusted, providing scope for performance creativity. In
particular jPop-E [Hashida et al. 2007], a Java implementation of the system, provides
such tools for shaping new performances.

To deal with polyphony, synchronization points are defined at the note grouping start
and end points in the attentive part. The attentive part is that voice which is most per-
ceptually prominent to a listener. The positions of notes in all other nonattentive parts
are linearly interpolated relative to the synchronization points (defined manually).
This means that all parts will start and end at the same time at the start and end of
groupings of the main attentive part.
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Pop-E was evaluated in the laboratory to see how well it could reconstruct specific hu-
man performances. After setting parameters manually, performances by three pianists
were reconstructed. The average correlation values between Pop-E and a performer
were 0.59 for tempo and 0.76 for dynamics. This has to be viewed in the context that
the average correlations between the human performers were 0.4 and 0.55, respectively.
Also the upper piano part was more accurate on average. (It is interesting to note that,
for piano pieces whose attentive part is the right hand, the Pop-E synchronization sys-
tem is similar to the methods in the DISTALL system for dealing with polyphony—
see Section 3.4.6.) Pop-E won the RenCon 2005 compulsory section, beating Director
Musices (Section 3.1.1). In RenCon 2006, Pop-E won the compulsory section beating
Kagurame (Section 3.4.2) and Ha-Hi-Hun (Section 3.4.3). In the open section in Ren-
Con 2006, SuperConductor (Section 3.1.3) beat Pop-E with one performance, and lost
to Pop-E with another.

3.1.8. Hermode Tuning. The next two subsections describe successful commercial
CSEMPs. Despite the lack of details available on these proprietary systems, they should
be included here, since they are practical CSEMPs that people are paying money for,
and illustrate some of the commercial potential of CSEMPs for the music business.
However, because of the lack of some details, the four review terms of reference will
not be applied. The first system is Hermode Tuning [Sethares 2004]. Most systems in
this review focus on dynamics and timing. However, intonation is another significant
area of expression for many instruments—for example, many string instruments. (In
fact, three intonation: rules were added to Director Musices in its later incarnations:
for example, the higher the pitch, the sharper the note.) Hermode Tuning is a ded-
icated expressive intonation system which can work in real time, its purpose being
to “imitate the living intonation of well educated instrumentalists in orchestras and
chamber music ensembles,” as noted an the first page of a 2003 marketing article on
the Hermode Web site.2 Instrumentalists do not perform in perfect intonation—in fact,
if an orchestra performed music in perfect tuning, all the time the sound would be less
pleasant than one that optimized its tuning through performance experience. A series
of algorithms are used in Hermode tuning not just to avoid perfect intonation but to
attempt to achieve optimal intonation. The algorithms have settings for different types
of music, for example, Baroque and jazz/pop. Examples are available on the Web site,2

and the system has been successful enough to be embedded in a number of commercial
products—for example, in Apple Logic Pro 7.

3.1.9. Sibelius. As mentioned in the introduction of this article, the music typesetting
software package Sibelius has built-in algorithms for expressive performance. These
use a rule-based approach. Precise details are not available for these commercial algo-
rithms but some information is available [Finn 2007]. For dynamics, beat groups such
as barlines, subbar groups, and beams are used to add varying degrees of stress. Also,
the higher the note is, the louder it is played, though volume resets at rests and dynamic
expression is constrained not to be excessive. Some random fluctuation is added to dy-
namics to make it more human-sounding as well. Tempo expression is achieved using
a simple phrase-based system; however, this does not include reliable phrase analysis.
In a personal communication, Finn reported that “phrasing need only be appropriate
perhaps 70% of the time—the ear overlooks the rest” and that “the ear is largely fooled
into thinking it’s a human performance.” Notion and Finale also have expressive per-
formance systems built into them, which are reportedly more advanced than Sibelius’,
but even fewer details are available for the proprietary methodologies in these systems.

2http://www.hermode.com.
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3.1.10. Computational Music Emotion Rule System. In relation to the philosophy behind
the Computational Music Emotion Rule System (CMERS), Livingstone et al. [2007], ob-
served that “the separation of musical rules into structural and performative is largely
an ontological one, and cedes nothing to the final audio experienced by the listener” (p.
47). The Computational Music Emotion Rule System has a rule-set of 19 rules devel-
oped through analysis-by-synthesis. The rules have an expressive representation up to
the phrase level, some requiring manual markup of the score. These rules are designed
not only to inject microfeature deviations into the score to generate humanlike perfor-
mances, but also to use microfeature and macrofeature deviations to express emotions
to the listener. To this end, CMERS is able to change the score itself, recomposing it.

CMERS has a two-dimensional model of human emotion space with four quadrants
going from very active and negative to very active and positive, to very passive and pos-
itive to very passive and negative. These four elements combine to give such emotions
as angry, bright, contented, and despairing. The quadrants were constructed from a
review of 20 studies of music and emotion. The rules for expressing emotions included
moving between major and minor modes, changing note pitch classes, and rising DM-
type rules for small changes in dynamics and tempo. It was found that the addition
of the microfeature humanization rules improved the accuracy of the emotional ex-
pression (as opposed to solely using macrofeature “recomposition” rules). The rules for
humanizing the performance included some rules which are similar to those for Direc-
tor Musices, such as phrase arch and emphasizing metrically important beats. Creative
performance is possible in CMERS by adjusting the parameters of the rule set, and the
emotional specification allows a user to specify different emotions for different parts of
a performance.

A significant number of formal listening tests have been done by Livingstone and
they support the hypothesis that CMERS is more successful than DM at expressing
emotions. CMERS is one of the better tested systems in this review —one reason being
that its aim is more measurable than a purely aesthetic goal. Examples of CMERS are
available on this author’s Web page.

3.2. Linear Regression

Learning CSEMPs can incorporate more knowledge more quickly than nonlearning
systems. However, such methods do not always provide tools for creative performance
because they are strongly rooted in past performances. Before continuing, it should be
explained that any CSEMP that learns expressive deviations needs to have a non-
expressive reference point, some sort of representation of the music played roboti-
cally/neutrally. The CSEMP can then compare this to the score played expressively
by a human, and learn the deviations. Linear regression is the first learning method
which will be addressed. Linear regression models assume a basically linear relation-
ship between the music features and the expressive actions. The advantage of such
models is their simplicity. The disadvantage is that, for expressive performance of mu-
sic, a linear model is almost certainly an oversimplification.

3.2.1. Music Interpretation System. The Music Interpretation Systems (MIS) [Katayose
et al. 1990; Aono et al. 1997; Ishikawa et al. 2000] generates expressive performances
in MIDI format, but learns expressive rules from audio recordings. This is done using a
spectral analysis system with dynamic programming for note detection. The system is
a simulatory CSEMP and uses a set of linear equations which map score features on to
performance deviation actions. Its expressive representation is on the note and phrase
level. MIS has methods to include some nonlinearities using logical ANDs between
music features in the score, and a way of reducing redundant music features from its

ACM Computing Surveys, Vol. 42, No. 1, Article 3, Publication date: December 2009.



3:20 A. Kirke and E. R. Miranda

equations. This redundancy reduction improves its “generalization” ability (the ability
for the system to perform music or composers that weren’t explicitly included in its
learning). MIS learns links between music features and performance actions of tempo,
dynamics, and articulation. The music features used include score expression marks,
and aspects of GTTM and two other forms of musicological analysis: Leonard Meyer’s
Theory of Musical Meaning [Meyer 1957] and Narmour’s [1990] Implication-Realization
(IR) Model. IR considers features of the previous two notes in the melody, and postulates
that a human will expect the melody to move in a certain direction and for a certain
distance; thus it can classify each note as being part of a certain expectation structure.
Meyer’s theory is also an expectation-based approach, but coming from the perspective
of game theory.

For testing, MIS was trained on the first half of a Chopin waltz and then used to
synthesize the second half. Correlations (accuracies when compared to a human per-
formance of the second half) were as follows: for velocity 0.87, for tempo 0.75, and for
duration 0.92. A polyphonic MIS interpretation of Chopin, Opus 64, Number 2, was
submitted to RenCon 2002. It came in third behind DISTALL (Section 3.4.6), beating
three of the other four automated systems—DM, Kagurame (3.4.2), and Ha-Hi-Hun
(3.4.3).

3.2.2. CaRo. CaRo [Canazza et al. 2000a, 2000b, 2001b, 2003, 2004] is a monophonic
CSEMP designed to generate audio files which—like CMERS (Section 3.1.1)—express
certain moods/emotions. It does not require a score to work from, but works on audio
files which are mood-neutral. The files are, however, assumed to include the performer’s
expression of the music’s hierarchical structure. Its expressive representation is at the
local-note level. CaRo’s performance actions at the note and intranote level include
changes to interonset interval, brightness, and loudness-envelope centroid. A linear
model is used to learn actions—every action has an equation characterized by param-
eters called shift and range expansion. Each piece of music in a particular mood has its
own set of shift and range expansion values. This limits the generalization potential.

CaRo also learns “how musical performances are organised in the listener’s mind”
[Canazza et al. 2001b, p. 35] in terms of moods: hard, heavy, dark, bright, light, and soft.
To do this, a set of listening experiments analyzed by principal-components analysis
(PCA) generates a two-dimensional space that captures 75% of the variability present
in the listening results; this space is used to represent listeners’ experience of the
moods. A further linear model is learned for each piece of music which maps the mood
space onto the shift and range expansion values. The user can select any point in the
mood space, and CaRo generates an expressive version of the piece. A line can be drawn
through mood space, and following that line in time CaRo can generate a performance
morphing through different moods. Apart from the ability to adjust shift and range
expansion parameters manually, CaRo’s potential for creative performance is extended
by its ability to have a line drawn through the mood space. Users can draw trajectories
through this space which create entirely novel performances, and this can be done in
real time.

For testing, 20-s clips each from three piano pieces by different composers were used.
A panel of 30 listeners evaluated CaRo’s ability to generate pieces with different ex-
pressive moods. Results showed that the system gave a good modeling of expressive
mood performances as realized by human performers.

3.3. Artificial Neural Networks

3.3.1. Artificial Neural Network Piano System. The earliest artificial neural network
(ANN) approach was the Artificial Neural Network Piano System [Bresin 1998]. It has
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two incarnations. The first did not learn from human performers: a set of seven mono-
phonic Director Musice rules were selected, and two (loudness and timing) feedforward
ANNs learned these rules through being trained on them. By learning a fixed model
of Director Musices, the ANN loses the performance creativity of the k-values. When
monophonic listening tests were done with 20 subjects, using Mozart’s piano sonatas
K331 and K281, the Director Musices performance was rated above the nonexpressive
computer performance, but the Neural Network performance rated highest of all. One
explanation for the dominance of the ANN over the original DM rules was that the ANN
generalized in a more pleasant way than the rules. The other ANN system by Bresin
was a simulation CSEMP which also used a separate loudness and timing feedback
ANN. The ANNs were trained using actual pianist performances from MIDI, rather
than on DM rules, but some of the independently learned rules turned out to be similar
to some DM rules. Informal listening tests judged the ANNs as musically acceptable.
The network looked at a context of four notes (loudness) and five notes (timing), and so
had note-to-phrase-level expressive representation, though it required the notes to be
manually grouped into phrases before being input.

3.3.2. Emotional Flute. The Camurri et al. [2000] Emotional Flute system uses explicit
music features and artificial neural networks, thus allowing greater generalization
than the related CaRo system (Section 3.2.2). The music features are similar to those
used in Director Musices. This CSEMP is strongly related to Bresin’s second ANN
in the previous section, extending it into the nonpiano realm and adding mood space
modeling. Expressive actions include interonset interval, loudness, and vibrato. Pieces
need to be segmented into phrases before being input—this segmentation is performed
automatically by another ANN. There are separate nets for timing and for loudness—
net designs are similar to Bresin’s, and have similar levels of expressive representation.
There is also a third net for the duration of crescendo and decrescendo at the single-note
level. However, the nets could not be successfully trained on vibrato, so a pair of rules
were generated to handle it. A flautist performed the first part of Telemann’s Fantasia
number 2 in nine different moods: cold, natural, gentle, bright, witty, serious, restless,
passionate, and dark. Like CaRo (Section 3.2.2), a 2D mood space is generated and
mapped on to the performances by the ANNs, and this mood space can be utilized to
give greater performance creativity.

To generate new performances, the network drives a physical model of a flute. Lis-
tening tests gave an accuracy of approximately 77% when subjects attempted to as-
sign emotions to synthetic performances. To put this in perspective, even when listen-
ing to the original human performances, human recognition levels were not always
higher than 77%; the description of emotional moods in music is a fairly subjective
process.

3.4. Case and Instance-Based Systems

3.4.1. SaxEx. Arcos and Lopez de Mantaras’ SaxEx [Arcos et al. 1997, 1998; Arcos
and deMantaras 2001; Arcos and Lopez deMantaras 2001; Lopez deMantaras 2002]
was one of the first systems to learn performances based on the performance context
of mood. Like the trumpet system described earlier (Section 3.1.5), SaxEx includes
algorithms for extracting notes from audio files and generating expressive audio files
from note data. SaxEx also looks at intranote features like vibrato and attack. Unlike
the trumpet system, SaxEx needs a nonexpressive audio file to perform transformations
upon. Narmour’s [1990] IR theory is used to analyze the music. Other elements used
to analyze the music are ideas from jazz theory, as well as GTTM TSR. This system’s
expressive representation is up to phrase level and is automated.
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SaxEx was trained on cases from monophonic recordings of a tenor sax playing four
jazz standards with different moods (as well as a nonexpressive performance). The
moods were designed around three dimensions: tender-aggressive, sad-joyful, and calm-
restless. The mood and local IR, GTTM, and jazz structures around a note are linked
to the expressive deviations in the performance of that note. These links are stored
as performance cases. SaxEx can then be given a nonexpressive audio file and told to
play it with a certain mood. A further artificial intelligence (AI) method is then used to
combine cases: fuzzy logic. For example, if two cases are returned for a particular note
in the score and one says play with low vibrato, and the other says play with medium
vibrato, then fuzzy logic combines them into a low-medium vibrato. The learning of new
case-based reasoning (CBR) solutions can be done automatically or manually through
a graphical user interface (GUI), which affords some performance creativity, giving the
user a stronger input to the generation of performances. However, this is limited by
SaxEx’s focus on being a simulation system. There is as in the Computational Music
Emotion Rule System (Section 3.1.10)—the potential for the user to generate a perfor-
mance with certain moods at different points in the music.

There has been no formal testing reported, but SaxEx examples are available online.
The authors reported have “dozens” of positive comments about the realism of the music
from informal listening tests, but no formal testing has been reported or details given.
The two short examples online (sad and joyful) sound realistic to us, more so than—for
example—the Trumpet System examples. But the accuracy of the emotional expression
was difficult for us to gauge.

3.4.2. Kagurame. Kagurame [Suzuki et al. 1999; Suzuki 2003] is another case-based
reasoning system which—in theory—also allows expressiveness to be generated from
moods, this time for piano. However, it is designed to incorporate a wider degree of
performance conditions than solely mood, for example, playing in a Baroque or Roman-
tic style. Rather than GTTM and IR, Kagurame uses its own custom hierarchical note
structures to develop and retrieve cases for expressive performance. This hierarchical
approach gives good expressive representation. Score analysis automatically divides
the score into segments recursively, with the restriction that the divided segment must
be shorter than one measure. Hence manual input is required for boundary information
for segments longer than one measure. The score patterns are derived automatically
after this, as is the learning of expressive actions associated with each pattern. Kagu-
rame acts on timing, articulation, and dynamics. There is also a polyphony action called
chord time lag—notes in the same chord can be played at slightly different times. It is
very much designed as a simulation system rather than for creative performance.

Results have been reported for monophonic Classical and Romantic styles. Tests were
based on learning 20 short Czerny etudes played in each style. Then a 21st piece was
performed by Kagurame. Listeners said it “sounded almost human like, and expression
was acceptable” and that the “generated performance tended to be similar to human,
particularly at characteristic points” [Suzuki et al. 1999, p. 647]. A high percentage of
listeners guessed correctly whether the computer piece was in Romantic or Classical
style. In RenCon 2004, Kagurame came in fourth in one-half of the compulsory section,
one ahead of Director Musices, but was beaten by DM in the second half, coming in
fifth. At RenCon 2006, a polyphonic performance of Chopin’s piano etude in E major
came in second—with Pop-E (Section 3.1.7) taking first place.

3.4.3. Ha-Hi-Hun. Ha-Hi-Hun [Hirata and Hiraga 2002] utilizes data structures de-
signed to allow natural language statements to shape performance conditions (these
include data structures to deal with nonmonophonic music). Hirata and Hiraga’s [2002]
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article focused on instructions of the form “generate performance of piece X in the style
of an expressive performance of piece Y .” As a result, there are significant opportunities
for performance creativity through generating a performance of a piece, in the style of
a very different second piece, or perhaps performing the piece Y bearing in mind that
it will be used to generate creative performances of the X piece. The music analysis of
Ha-Hi-Hun uses GTTM TSR to highlight the main notes that shape the melody. TSR
gives Ha-Hi-Hun an expressive representation above note level. The deviations of the
main notes in the Y piece relative to the score of Y are calculated, and can then be
applied to the main notes in the piece X to be performed by Ha-Hi-Hun. After this,
the new deviations in X ’s main notes are propagated linearly to surrounding notes like
“expressive ripples” moving outward. The ability of Ha-Hi-Hun to automatically gen-
erate expressive performances comes from its ability to generate a new performance X
based on a previous human performance Y .

In terms of testing, performances of two pieces were generated, each in the style
of performances of another piece. Formal listening results were reported as positive,
but few experimental details have been given. In RenCon 2002, Ha-Hi-Hun learned
to play the Chopin etude, Opus 10, Number 3, through learning the style of a human
performance of Chopin’s nocturne, Opus 32, Number 2. The performance came ninth
out of 10 submitted performances by other CSEMPs (many of which were manually
produced). In RenCon 2004, Ha-Hi-Hun came in last in the compulsory section, beaten
by both Director Musices and Kagurame (Section 3.4.2). In RenCon 2006, a performance
by Ha-Hi-Hun also came in third out of six in the compulsory section, beaten by Pop-E
(Section 3.1.7) and Kagurame (Section 3.4.2).

3.4.4. PLCG System. Gerhard Widmer has applied various versions of a rule-based
learning approach, attempting to utilize a larger database of music than previous
CSEMPs. The PLCG system [Widmer 2000, 2002, 2003] uses data mining to find large
numbers of possible performance rules and cluster each set of similar rules into an
average rule. This is a system for musicology and simulation rather than one for cre-
ative performance. PLCG is Widmer’s own metalearning algorithm—the underlying
algorithm being Sequential Covering [Mitchell 1997]. PLCG runs a series of sequen-
tial covering algorithms in parallel on the same monophonic musical data, and gath-
ers the resulting rules into clusters, generating a single rule from each cluster. The
data set was 13 Mozart piano sonatas performed by Roland Batik in MIDI form (only
melodies were used—giving 41,116 notes). A note-level structure analysis learns to
generate tempo, dynamics, and articulation deviations based on the local context—
for example, size and direction of intervals, durations of surrounding notes, and scale
degree. So this CSEMP has a note-level expressive representation. As a result of the
PLCG algorithm, 383 performance rules were turned into just 18 rules. Interestingly,
some of the generated rules had similarities to some of the Director Musices rule
set.

Detailed testing has been done on PLCG, including its generalization ability. Wid-
mer’s systems are the only CSEMPs reviewed here that have had any significant
generalization testing. The testing methods were based on correlation approaches.
Seven pieces selected from the scores used in learning were regenerated using the
rule set, and their tempo/dynamics profiles compared to the original performances
very favorably. Regenerations were compared to performances by a different human
performer, Phillipe Entremont, and showed no degradation relative to the original per-
former comparison. The rules were also applied to some music in a romantic style (two
Chopin pieces), giving encouraging results. There are no reports of formal listening
tests.
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3.4.5. Combined Phrase-Decomposition/PLCG. The above approach was extended by
Widmer and Tobudic into a monophonic system whose expressive representation
extends into higher levels of the score hierarchy. This was the combined Phrase-
Decomposition/PLCG system [Widmer and Tobudic 2003]. Once again this is a sim-
ulation system rather than one for creative performance. When learning, this CSEMP
takes as input scores that have had their hierarchical phrase structure defined to three
levels by a musicologist (who also provided some harmonic analysis), together with an
expressive MIDI performance by a professional pianist. Tempo and dynamics curves
are calculated from the MIDI performance, and then the system does a multilevel de-
composition of these expression curves. This is done by fitting quadratic polynomials
to the tempo and dynamics curves (similar to the curves found in Todd’s Parabola
Model—Section 3.1.2).

Once the curve-fitting has been done, there is still a “residual” expression in the
human MIDI performance. This is hypothesized as being due to note-level expression,
and the PLCG algorithm is run on the residuals to learn the note-level rules which
generate this residual expression. The learning of the non-PLCG tempo and dynamics
is done using a case-based learning type method—by a mapping from multiple-level
features to the parabola/quadratic curves. An extensive set of music features are used,
including: length of the note group, melodic intervals between start and end notes,
where the pitch apex of the note group is, whether the note group ends with a ca-
dence, and the progression of harmony between start, apex, and end. This CSEMP has
the most sophisticated expressive representation of all the systems described in our
review.

To generate an expressive performance of a new score, the system moves through the
score and in each part runs through all its stored musical features vectors learned from
the training; it finds the closest one using a simple distance measure. It then applies the
curve stored in this case to the current section of the score. Data for curves at different
levels, and results of the PLCG, are added together to give the expression performance
actions.

A battery of correlation tests were performed. Sixteen Mozart sonatas were used to
test the system—training on 15 of them and then testing against the remaining one.
This process was repeated independently selecting a new 1 of the 16 and then retraining
on the other 15. This gave a set of 16 results which the authors described as “mixed.”
Dynamics generated by the system correlated better with the human performance than
a nonexpressive performance curve (i.e., straight line) did, in 11 out of 16 cases. For the
timing curves, this was true for only 6 out of 16 cases. There are no reports of formal
listening tests.

3.4.6. DISTALL System. Widmer and Tobudic did further work to improve the results of
the Combined Phrase-Decomposition/PLCG, developing the DISTALL system [Tobudic
and Widmer 2003a; 2003b; 2003c; 2005] for simulation. The learned performance cases
in the DISTALL system are hierarchically linked, in the same way as the note groupings
they represent. So when the system is learning sets of expressive cases, it links together
the feature sets for a level 3 grouping with all the level 2 and level 1 note groupings
it contains. When a new piece is presented for performance, and the system is looking
at a particular level 3 grouping of the new piece, say X —and X contains a number of
level 2 and level 1 subgroupings—then not only are the score features of X compared
to all level 3 cases in the memory, but the subgroupings of X are compared to the
subgroupings of the compared level 3 cases as well. There have been measures available
which can do such a comparison in case-based learning before DISTALL (e.g., RIBL
[Emde and Wettschereck 1996]). However, DISTALL does it in a way more appropriate
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to expressive performance—giving a more equal weighting to subgroupings within a
grouping, and giving this system a high expressive representation.

Once again, correlation testing was done with a experiments similar to those de-
scribed in Section 3.4.5. All 16 generated performances had smaller dynamics errors
relative to the originals than a robotic/neutral performance had. For tempo, 11 of the
16 generated performances were better than a robotic/neutral performance. Correla-
tions varied from 0.89 for dynamics in Mozart K283 to 0.23 for tempo in Mozart K332.
The mean correlation for dynamics was 0.7 and for tempo was 0.52. A performance
generated by this DISTALL system was entered into RenCon 2002. The competition
CSEMP included a simple accompaniment system where dynamics and timing changes
calculated for the melody notes were interpolated to allow their application to the ac-
companiment notes as well. Another addition was a simple heuristic for performing
grace notes: the sum of durations of all grace notes for a main note was set equal to
5% of the main note’s duration, and the 5% of duration was divided equally among the
grace notes. The performance was the top-scored automated performance at RenCon
2002—ahead of Kagurame (Section 3.4.2), MIS (Section 3.2.1), and Ha-Hi-Hun (Section
3.4.3)—and it beat one nonautomated system.

3.5. Statistical Graphical Models

3.5.1. Music Plus One. The Music Plus One system [Raphael 2001a, 2001b, 2003] is
able to deal with multiple instrument polyphonic performances. It has the ability to
adjust performances of polyphonic sound files (e.g., orchestral works) to fit as accom-
paniment for solo performers. This CSEMP contains two modules: the Listen and Play
modules. Listen uses a Hidden Markov Model (HMM) to track live audio and find the
soloist’s place in the score in real time. Play uses a Bayesian Belief Network (BBN)
which, at any point in a soloist performance and based on the performance so far, tries
to predict the timing of the next note the soloist will play. Music Plus One’s BBN is
trained by listening to the soloist. As well as timing, the system learns the loudness
for each phrase of notes. However, loudness learning is deterministic—it performs the
same for each accompaniment of the piece once trained, not changing based on the
soloist changing his or her own loudness. Expressive representation is at the note level
for timing and phrase level for loudness.

The BBN assumes a smooth changing in tempo, so any large changes in tempo (e.g.,
a new section of a piece) need to be manually marked up. For playing MIDI files for
accompaniment, the score needs to be divided up manually into phrases for dynam-
ics; for using audio files for accompaniment, such a division is not needed. When the
system plays back the accompaniment, it can play it back in multiple expressive in-
terpretations depending on how the soloist plays. So it has learned a flexible (almost
tempo-independent) concept of the soloist’s expressive intentions for the piece.

There is no test reported for this system—the author stated the impression that the
level of musicality obtained by the system is surprisingly good, and asked readers to
evaluate the performance themselves by going to the Web site and listening. Music
Plus One is actually being used by composers, and for teaching music students. It came
in first at RenCon 2003 in the compulsory section with a performance of Chopin’s pre-
lude Number 15, Raindrop, beating Ha-Hi-Hun (3.4.3), Kagurame (3.4.2), and Wid-
mer’s system (3.4.6). To train Music Plus One for this, several performances were
recorded played by a human, using a MIDI keyboard. These were used to train the
BBN. The model was extended to include velocities for each note, as well as times, with
the assumption that the velocity varies smoothly (like a random walk) except at hand-
identified phrase boundaries. Then a mean performance was generated from the trained
model.
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As far as performance creativity goes, the focus on this system is not so much to
generate expressive performances as to learn the soloist’s expressive behavior and react
accordingly in real time. However, the system has an “implicit” method of creating new
performances of the accompaniment—the soloist can change his or her performance
during playback. There is another creative application of this system: multiple pieces
have been composed for use specifically with the Music Plus One system—pieces which
could not be properly performed without the system. One example contains multiple
sections where one musician plays seven notes while the other plays 11. Humans would
find it difficult to do this accurately, whereas a soloist and the system can work together
properly on this complicated set of polyrhythms.

3.5.2. ESP Piano System. Grindlay’s [2005] ESP Piano system is a polyphonic CSEMP
designed to simulate expressive playing of pieces of piano music which consist of largely
monophonic melodies, with a set of accompanying chords (known as homophony). A Hid-
den Markov Model learns expressive performance using music features such as whether
the note is the first or last of the piece, the position of the note in its phrase, and the
note’s duration relative to its start and the next note’s start (called its articulation here).
The expressive representation is up to the phrase level. Phrase division is done manu-
ally, though automated methods were discussed by the author. The accompaniment is
analyzed for a separate set of music features, some of which are like the melody music
features. Some are unique to chords—for example, the level of consonance/dissonance
of the chord (based on a method called Euler’s Solence). Music features are then mapped
onto a number of expressive actions such as (for melody) the duration deviation, and
the velocity of the note is compared to the average velocity. For the accompaniment,
similar actions are used as well as some chord-only actions, like the relative onset of
chord notes (similar to the Kagurame Chord Time Lag, discussed in Section 3.4.2).
These chordal values are based on the average of the values for the individual notes in
the chord.

Despite the focus of this system on homophony, tests were only reported for mono-
phonic melodies, training the HMM on 10 graduate performances of Schumann’s
Träumerei. Ten out of 14 listeners ranked the expressive ESP output over the inexpres-
sive version. Ten out of 14 ranked the ESP output above that of an undergraduate perfor-
mance. Four out of seven preferred the ESP output to a graduate student performance.

3.6. Other Regression Methods

3.6.1. Drumming System. Thus far in this review only pitched instrument systems
have been surveyed—mainly piano, saxophone, and trumpet. A system for nonpitched
(drumming) expression will now be examined. In the introduction it was mentioned
that pop music has enthusiastically utilized the “robotic” aspects of MIDI sequencers.
However, eventually some pop musicians wanted a more realistic sound for their elec-
tronic music, and humanization systems were developed for drum machines that added
random tempo deviations to beats. Later systems also incorporated what are known as
grooves—a fixed pattern of tempo deviations which are applied to a drum beat or any
part of a MIDI sequence (comparable to a one-level Clynes’ pulse set; see Section 3.1.3).
Such groove systems have been applied commercially in mass-market systems like
Propellorhead Reason, where it is possible to generate groove templates from a drum
track and apply them to any other MIDI track [Carlson et al. 2003]. However, just as
some research has suggested limitations in the application of Clynes’ composer pulses,
so Wright and Berdahl’s [2006] research showed the limits of groove templates. Their
analysis of multivoiced Brazilian drumming recordings found that groove templates
could only account for 30% of expressive timing.
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Wright and Berdahl [2006] investigated other methods to capture the expressive tim-
ing using a system that learns from audio files. The audio features examined were a
note’s timbre, metric position, and rhythmic context, the rhythmic context being the
timbres and relative temporal position of notes within one beat of the input notes—thus
giving the system a narrow expressive representation. The system learns to map these
audio features onto the timing deviations of each nonpitched note; it is not designed
to generate creative performances, but to simulate them. The mapping model is based
on regression between audio features and timing deviation (vs. a quantized version
of the beat). Three different methods of learning the mapping model were tried: Ker-
nel Ridge Regression [Hastie et al. 2001], Gaussian Process Regression [Rasmussen
and Williams 2006], and kNN [Hellman 1991]. This learning approach was found
to track the expressive timing of the drums much better than the groove templates,
clearly demonstrated in their graphs showing the error over the drum patterns. All
three learning methods were found to give approximately equal accuracy, though it
is believed that Gaussian Process Regression has the greatest room for improvement.
Examples are provided online. Note that the system is not limited only to Brazilian
drumming; Wright and Berdahl [2006] also tested it on Reggae rhythms with similar
success.

3.6.2. KCCA Piano System. The most recent application of kernel regression methods
to expressive performance is the system by Dorard et al. [2007]. Their main aim was
simulatory, to imitate the style of a particular performer and allow new pieces to be
automatically performed using the learned characteristics of the performer. A performer
is defined based on a “worm” representation of expressive performance [Dixon et al.
2002]. The worm is a visualization tool for the loudness and tempo aspects of expressive
performance. It uses a 2D representation with tempo on the x-axis and loudness on the
y-axis. Then, as the piece plays, at fixed periods in the score (e.g., once per bar) an
average is calculated for each period and a filled circle plotted on the graph at the
average. Past circles remain on the graph, but their color fades and size decrease as
time passes—thus creating the illusion of a wriggling worm whose tail fades off into
the distance in time. If the computer played an expressionless MIDI file, then its worm
would stand still, not wriggling at all.

The basis of Dorard’s [2007] approach is to assume that the score and the human
performances of the score are two views of the musical semantic content, thus enabling
a correlation to be drawn between the worm and the score. The system focuses on ho-
mophonic piano music—a continuous upper melody part and an accompaniment—and
divides the score into a series of chord and melody pairs. Kernel Canonical Correla-
tion Analysis (KCCA) [Sholkopf et al. 1998] is then used, a method which looks for a
common semantic representation between two views. Its expressive representation is
based on the note group level, since KCCA is looking to find correlations between short
groups of notes and the performance worm position. An addition needed to be made to
the learning algorithm to prevent extreme expressive changes in tempo and dynamics.
This issue is a recurring problem in a number of CSEMPs (see the artificial neural
network models discussed in Section 3.3, Sibelius discussed in Section 3.1.9, and also
the discussion in Section 3.7.3).

Testing was performed on Chopin’s Etude 3, Opus 10—the system was trained on
the worm of the first eight bars, and then tried to complete the worm for bars 9 to
12. The correlation between the original human performance worm for 9 to 12 and
the reconstructed worm was measured to be 0.95, whereas the correlation with a ran-
dom worm was 0.51. However the resulting performances were reported (presumably
through informal listening tests) to not sound very realistic.

ACM Computing Surveys, Vol. 42, No. 1, Article 3, Publication date: December 2009.



3:28 A. Kirke and E. R. Miranda

3.7. Evolutionary Computation

A number of more recent CSEMPs have used evolutionary computation [EC] methods,
such as genetic algorithms [Mitchell 1996] or Multiagent systems [Kirke 1997]. In
general (but not always), such systems have opportunities for performance creativity.
They often have a parameterization that is simple to change—for example, a fitness
function. They also have an emergent [Chalmers 2006] output which can sometimes
produce unexpected but coherent results.

3.7.1. Genetic Programming Jazz Sax. Some of the first researchers to use EC in com-
puter systems for expressive performance were Ramirez and Hazan. They did not start
out using EC, beginning with a regression tree system for jazz saxophone [Ramirez and
Hazan 2005]. This system will be described before moving on to the genetic program-
ming (GP) approach, as it is the basis of their later GP work. A performance decision tree
was first built using C4.5 [Quinlan 1993]. This was built for musicological purposes—to
see what kinds of rules were generated—not to generate any performances. The deci-
sion tree system had a three-note-level expressive representation, and music features
used to characterize a note included metrical position and some Narmour [1990] IR
analysis. These features were mapped onto a number of performance actions from the
training performances, such as lengthen/shorten note, play note early/late, and play
note louder/softer. Monophonic audio was used to build this decision tree using the
authors’ own spectral analysis techniques and five jazz standards at 11 different tem-
pos. The actual performing system was built as a regression tree rather than a decision
tree, thus allowing continuous expressive actions. The continuous performance features
simulated were duration, onset, and energy variation (i.e., loudness). The learning algo-
rithm used to build the tree was M5Rules [Witten and Frank 2000] and performances
could be generated via MIDI and via audio using the synthesis algorithms. In tests,
the resulting correlations with the original performances were 0.72, 0.44, and 0.67 for
duration, onset and loudness, respectively. Other modeling methods were tried (linear
regression and four different forms of support vector machines) but they didn’t fare as
well correlationwise.

Ramirez and Hazan’s next system [Hazan and Ramirez 2006] was also based on re-
gression trees, but these trees were generated using genetic programming (GP), which
is ideal for building a population of “if-then” regression trees. GP was used to search
for regression trees that best emulated a set of human audio performance actions. The
regression tree models were basically the same as in their previous article [Ramirez
and Hazan 2005], but in this case a whole series of trees was generated, they were
tested for fitness, and then the fittest were used to produce the next generation of
trees/programs (with some random mutations added). Fitness was judged based on a
distance calculated from a human performance. Creativity and expressive representa-
tion were enhanced because, in addition to modeling timing and dynamics, the trees
modeled the expressive combining of multiple score notes into a single performance
note (consolidation), and the expressive insertion of one or several short notes to antic-
ipate another performance note (ornamentation). These elements are fairly common in
relation to jazz saxophone. It was possible to examine these deviations because the fit-
ness function was implemented using an edit distance [Levenshtein 1966] to measure
score edits.

This evolution was continued until average fitness across the population of trees
ceased to increase. The use of GP techniques was deliberately applied to give a range of
options for the final performance since, as Ramirez and Hazan [2005] said, “performance
is an inexact phenomenon” (p. 31). Also because of the mutation element in genetic
programming, there is the possibility of unusual performances being generated. So
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this CSEMP has quite a good potential for performance creativity. No evaluation was
reported of the resulting trees’ performances—but average fitness stopped increasing
after 20 generations.

3.7.2. Sequential Covering Algorithm GAs. The Sequential Covering Algorithm Genetic
Algorithm (GA) [Ramirez and Hazan 2007] uses sequential covering to learn perfor-
mance. Each covering rule is learned using a GA, and a series of such rules are built
up covering the whole problem space. Ramirez and Hazan [2007] returned to their first
(non-EC) article’s level of expressive representation—looking at note-level deviations
without ornamentation or consolidation. However, they made significant improvements
over their original non-EC article. The correlation coefficients for onset, duration, and
energy/loudness in the original system were 0.72, 0.44, and 0.67, respectively, but in
this new system they were 0.75, 0.84, and 0.86, respectively—significantly higher. And
this system also has the advantage of slightly greater creativity due to its GA approach.

3.7.3. Generative Performance GAs. A parallel thread of EC research is Zhang and Mi-
randa’s [2006a; 2006b] monophonic generative performance GAs which evolve pulse
sets (see Section 3.1.3). Rather than comparing the generated performances to actual
performances, the fitness function here expresses constraints inspired by the generative
performance work of Eric Clarke [1998]. When a score is presented to the GA system
for performance, the system constructs a theoretical timing and dynamics curve for
the melody (one advantage of this CSEMP is that this music analysis is automatic).
However, this curve is not used directly to generate the actual performance, but to
influence the evolution. This, together with the GA approach, increases the perfor-
mance creativity of the system. The timing curve comes from an algorithm based on
Cambouropoulos’ [2001] Local Boundary Detection Model (LBDM)—the inputs to this
model are score note timing, pitch, and harmonic intervals. The resulting curve is higher
for greater boundary strengths. The approximate dynamics curve is calculated from a
number of components—the harmonic distance between two notes (based on a measure
by Krumhans [1991]), the metrical strength of a note (based on the Melisma software
[Temperley and Sleator 1999]), and the pitch height. These values are multiplied for
each note to generate a dynamics curve. The expressive representation of this system
is the same as the expressive representation of the methodologies used to generate the
theoretical curves.

A fitness function is constructed referring to the score representation curves. It has
three main elements—fitness is awarded if (1) the pulse set dynamics and timing de-
viations follow the same direction as the generated dynamics and timing curves; (2)
timing deviations are increased at boundaries; (3) timing deviations are not too ex-
treme. Point (1) does not mean that the pulse sets are the same as the dynamics and
timing curves, but—all else being equal—that if the dynamic curve moves up between
two notes, and the pulse set moves up between those two notes, then that pulse set
will get a higher fitness than one that moves down there. Point (3) is reminiscent of the
restriction of expression used in the ANN models (Section 3.3.1) and the KCCA Piano
(Section 3.6.2) model described earlier. It is designed to prevent the deviations from
becoming too extreme.

There has been no formal testing of this GA work, though the authors demonstrated—
using as an example part of Schumann’s Träumerei and a graphical plot—that the
evolved pulse sets are consistent in at least one example with the theoretical timing
and dynamics deviations curves. Zhang and Miranda [2006a] claimed that “when lis-
tening to pieces performed with the evolved pulse sets, we can perceive the expressive
dynamics of the piece” (p. 1839). However, more evaluation would be helpful; repeating
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pulse sets have been shown not to be universally applicable as an expressive action
format. Post-Clynes CSEMPs have shown more success using noncyclic expression.

3.7.4. Multi-Agent System with Imitation. Zhang and Miranda [2007] developed the above
into a MultiAgent System (MAS) with Imitation—influenced by Miranda’s [2002] evo-
lution of music MAS study, and inspired by the hypothesis that expressive music perfor-
mance strategies emerge through interaction and evolution in the performers’ society.
In this model, each agent listens to other agents’ monophonic performances, evaluates
them, and learns from those whose performances are better than their own. Every
agent’s evaluation equation is the same as the fitness function used in the previous
GA-based system, and performance deviations are modeled as a hierarchical pulse set.
So it has the same expressive representation. When an agent hears a performance, it
evaluates it as being better than its own, it attempts to imitate it but ends up giv-
ing a slightly mutated performance. This imitating agent then generates a pulse set
internally that matches its mutated performance. So pulse sets are not exchanged,
performances are (just as humans imitate behavior, not neural and underlying biolog-
ical processes). The performances of the system, which were generated through 100
generations of imitation, were once again not evaluated by the researchers, though it
was found that the imitation approach generated performances more slowly than the
previous GA approach.

This CSEMP has significant performance creativity, one reason being that the pulse
sets generated may have no similarity to the hierarchical constraints of human pulse
sets. They are generated mathematically and abstractly from agent imitation perfor-
mances. So entirely novel pulse set types can be produced by agents that a human
would never generate. Another element that contributes to creativity is that although
a global evaluation function approach was used, a diversity of performances was found
to be produced in the population of agents.

This Zhang/Miranda MAS system has much potential for future work. For example,
an approach could be investigated that allowed each agent to have its own evaluation
function. Some agents could use comparisons with human performances as an evalu-
ation function, while some agents could be equipped with entirely novel non-human-
fitness evaluation functions. Thus, by altering the proportion of agents with different
types of evaluation functions, different types of performances could be generated in
the population. Another possibility would be to allow more direct user intervention in
shaping performances by letting users become agents in the system themselves.

3.7.5. Ossia. Like the Computational Music Emotion Rule System (Section 3.1.10),
Dahlstedt’s [2007] Ossia is a CSEMP which incorporates both compositional and perfor-
mance aspects. However, whereas CMERS was designed to operate on a composition,
Ossia is able to generate entirely new and expressively performed compositions. Al-
though it is grouped here as an EC learning system, technically Ossia is not a learning
system. It is not using EC to learn how to perform like a human, but to generate novel
compositions and performances. However, it is included in this section because its issues
relate more closely to EC and learning systems than to any of the nonlearning systems
(the same reason applies for the system described in Section 3.7.6). Ossia generates mu-
sic through a novel representational structure that encompasses both composition and
performance—recursive trees (generated by GAs). These are “upside-down trees” con-
taining both performance and composition information. The bottom leaves of the tree
going from left to right represent actual notes (each with their own pitch, duration, and
loudness value) in the order in which they are played. The branches above the notes
represent transformations on those notes. To generate music, the tree is flattened—the
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“leaves” higher up act upon the leaves lower down when being flattened to produce
a performance/composition. So going from left to right in the tree represents music
in time. The trees are generated recursively—this means that the lower branches of
the tree are transformed copies of higher parts of the tree. Here we have an element
we argue is the key to combined performance and composition systems—a common
representation—in this case transformations.

This issue of music representation is not something this survey has addressed ex-
plicitly, being in itself an issue worthy of its own review; for examples, see Dannen-
berg [1993] and Anders [2007]. However, a moment will be taken to briefly discuss it
now. The representation chosen for a musical system has a significant impact on the
functionality—Ossia’s representation is what leads to its combined composition and
performance generation abilities. The most common music representation mentioned
in this review has been MIDI, which is not able to encode musical structure directly.
As a result, some MIDI-based CSEMPs have to supply multiple files to the CSEMP, a
MIDI file together with files describing the musical structure. More flexible representa-
tions than MIDI include MusicXML, ENP-score-notation [Laurson and Kuuskankare
2003], WEDELMUSIC XML [Bellini and Nesi 2001], MusicXML4R [Good 2006], and
the proprietary representations used by commercial software such as Sibelius, Finale,
Notion, and Zenph High-Resolution MIDI [Atkinson 2007] (which was recently used on
a CD release of automated Disklavier reperformances of Glenn Gould).

Many of the performance systems described in this review so far transform an ex-
pressionless MIDI or audio file into an expressive version. Composition is often done
in a similar way—motifs are transformed into new motifs, and themes are transformed
into new expositions. Ossia uses a novel transformation-based music representation.
In Ossia, transformations of note, loudness, and duration are possible—the inclusion
of note transformations here emphasizing the composition aspect of the Ossia. The em-
bedding of these transformations into recursive trees leads to the generation of gradual
crescendos, decrescendos, and duration curves—which sound like performance strate-
gies to a listener. Because of this Ossia has a good level of performance creativity. The
trees also create a structure of themes and expositions. Ossia uses a GA to generate a
population of trees, and judges for fitness using such rules as number of notes per sec-
ond, repetivity, amount of silence, pitch variation, and level of recursion. These fitness
rules were developed heuristically by Dahlstedt [2007] through analysis-by-synthesis
methods.

Ossia’s level of expressive representation is equal to its level of compositional rep-
resentation. Dahlstedt [2007] observed: “The general concept of recapitulation is not
possible, as in the common ABA form. This does not matter so much in short compo-
sitions, but may be limiting.” So Ossia’s expressive representation would seem to be
within the A’s and B’s, giving it a note-to-section-level expressive representation. In
terms of testing, the system has not been formally evaluated, though it was exhibited
as an installation at Gaudeamus Music Week in Amsterdam. Examples are also avail-
able on Dahlstedt’s Web site,3 including a composed suite. Dahlstedt [2007] claimed
that the sound examples “show that the Ossia system has the potential to generate and
perform piano pieces that could be taken for human contemporary compositions” (p. 9).
The examples on the Web site are impressive in their natural quality. The question of
how to test a combined performance and composition, when that system is not designed
to simulate but to create, is a sophisticated problem which will not be addressed here.
Certainly listening tests are a possibility but these may be biased by the preferences of
the listener (e.g., by a preference for pre-1940s classical music, or pop music). Another
approach is musicological analysis, but the problem then becomes that musicological

3http://www.init.ituniv.se/∼palle/pmwiki/pmwiki.php?n=Works.Ossia.
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tools are not available for all genres and all periods—for example, musicology is more
developed for pre-1940 than post-1940 art music.

An example score from Ossia is described on the Web site which contains detailed
dynamics and articulations, and subtle tempo fluctuations and rubato. This subtlety
raises another issue—scores generated by Ossia in common music notation have to be
simplified to be simply readable by humans. The specification of exact microfeatures in
a score can lead to it being unplayable except by computer or the most skilled concert
performer. This has a parallel in a compositional movement which emerged in the 1970s,
“The New Complexity,” involving composers such as Brian Ferneyhough and Richard
Barret [Toop 1988]. In “The New Complexity,” elements of the score are often specified
down to the microfeature level, and some scores are described as almost unplayable.
Compositions such as this, whether by human beings or computer, bring into question
the whole composition/performance dichotomy. (These issues also recall the end of Ian
Pace’s quote in the first section of this review.) However, technical skill limitations and
common music notation scores are not necessary for performance if the piece is being
written on and performed by a computer. Microfeatures can be generated as part of the
computer (or computer-aided) composition process if desired. In systems such as Ossia
and CMERS (Section 3.1.10), the composition/performance dichotomy starts to break
down—the dichotomy is really between macrofeatures and microfeatures of the music.

3.7.6. pMIMACS. Before discussing this final system in the survey, another motiva-
tion for bringing composition and performance closer in CSEMPs should be highlighted.
A significant amount of CSEMP effort goes toward analyzing the musical structure of
the score/audio. However, many computer composition systems generate a piece based
on some structure which can often be made explicitly available. So in computer music it
is often inefficient to have separate composition and expressive performance systems—
that is, where a score is generated and the CSEMP sees the score as a black box and
performs a structure analysis. Greater efficiency and accuracy would require a proto-
col allowing the computer composition system to communicate structure information
directly to the CSEMP, or—like Ossia—simply to combine the systems using, for ex-
ample, a common representation (where microtiming and microdynamics are seen as
an actual part of the composition process). A system which was designed to utilize this
combination of performance and composition is pMIMACS, developed by the authors of
this survey. It is based on a previous system MIMACS (Mimetics-Inspired Multi-Agent
Composition System), which was developed to solve a specific compositional problem:
generating a multispeaker electronic composition.

pMIMACS combines composition and expressive performance—the aim being to gen-
erate contemporary compositions on a computer which when played back on a computer
do not sound too machinelike. In Zhang/Miranda’s system (Section 3.7.4) the agents
imitate each others’ expressive performances of the same piece, whereas in pMIMACS
agents can be performing entirely different pieces of music. The agent cycle is a process
of singing and assimilation. Initially all agents are given their own tune—these may
be random or chosen by the composer. An agent (A) is chosen to start. A performs its
tune, based on its performance skill (explained below). All other agents listen to A and
the agent with the most similar tune, say agent B, adds its interpretation of A’s tune
to the start or end of its current tune. There may be pitch and timing errors due to its
“mishearing.” Then the cycle begins again, but with B performing its extended tune in
place of A performing its tune.

An agent’s initial performing skills are defined by the MIDI pitch average and stan-
dard deviation of their initial tune—this could be interpreted as the range they are
comfortable performing in, or as the tune they are familiar with performing. The
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further-away a note’s pitch is from the agent’s average learned pitch, the slower the
tempo at which the agent will perform. Also, further-away pitches will be played more
quietly. An agent updates its skill/range as it plays. Every time it plays a note, that
note changes the agent’s average and standard deviation pitch value. So, when an
agent adds an interpretation of another agent’s tune to its own, then as the agent
performs the new extended tune its average and standard deviation (skill/range) will
update accordingly—shifting and perhaps widening—changed by the new notes as it
plays them. In pMIMACS, an agent also has a form of performance context, called an
excitability state. An excited agent will play its tune with twice the tempo of a nonexcited
agent, making macroerrors in pitch and rhythm as a result.

The listening agent has no way of knowing whether the pitches, timings, and ampli-
tude that it is hearing are due to the performance skills of the performing agent, or are
part of the “original” composition. So the listening agent attempts to memorize the tune
as it hears it, including any performance errors or changes. As the agents perform to
each other, they store internally an exponentially growing piece of transforming music.
The significant and often smooth deviations in tempo generated by the performance in-
teraction will create a far less robotic-sounding performance than rhythms generated
by a quantized palette would. On the downside, the large-scale rhythmic texture has
the potential to become repetitive because of the simplicity of the agents’ statistical
model of performance skill. Furthermore, the system can generate rests that are so
long the composition effectively comes to a halt for the listener. But overall the MAS is
expressing its experience of what it is like to perform the tune, by changing the tempo
and dynamics of the tune; at the same time, this contributes to the composition of the
music.

There is also a more subtle form of expression going on relating to the hierarchical
structure of the music. The hierarchy develops as agents pass around an ever growing
string of phrases. Suppose an agent performs a phrase P and passes it on. Later on it
may receive back a “superphrase” containing two other phrases Q and R, in the form
QPR. In this case agent, A will perform P faster than Q and R (since it knows P). Now
suppose in future A is passed back a supersuper-phrase of, say, SQPRTQPRTS; then po-
tentially it will play P fastest, QPR second fastest (since it has played QPR before), and
the S and T phrases slowest. So the tempo and amplitude at which an agent performs
the parts SQPRTQPRTS is affected by how that phrase was built up hierarchically
in the composition/imitation process. Thus there is an influence on the performance
from the hierarchical structure of the music. This effect is only approximate because of
the first-order statistical model of performance skill.

No formal listening tests have been completed yet, but examples of an agent’s tune
memory after a number of cycles are available from the authors by request. Despite the
lack of formal listening tests, pMIMACS is reported here as a system designed from
the ground up to combine expressive performance and composition.

4. SUMMARY

Before reading this summary, another viewing of Table I at the start of the review
may be helpful to the reader. Expressive performance is a complex behavior with many
causative conditions, so it is no surprise that in this review almost two-thirds of the
systems produced have been learning CSEMPS, usually learning to map music features
onto expressive actions. Expressive performance actions most commonly included tim-
ing and loudness adjustments, with some articulation, and the most common noncustom
method for analysis of music features was GTTM, followed by IR. Due to its simplicity
in modeling performance, the most common instrument simulated was piano—but in-
terestingly this was followed closely by saxophone, possibly because of the popularity
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Table V. Summary of Four Primary Terms of Reference
Expressive Testing Performance

CSEMP Representation Status Nonmonophonic Creativity

Director Musices 7 10 Yes 8

Hierarchical Parabola Model 8 7 3

Composer Pulse 6 9 Yes 5

Bach Fugue 6 4 Yes 3

Rubato 7 4 Yes 8

Trumpet Synthesis 4 1 3

MIS 6 6 Yes 3

ANN Piano 4 6 3

Music Plus One 4 7 Yes 4

SaxEx 5 1 8

CaRo 3 6 7

Emotional Flute 4 6 6

Kagurame 8 8 Yes 3

Ha-Hi-Hun 6 6 Yes 8

PLCG 4 6 3

Phrase-Decomposition/PLCG 10 6 3

DISTALL 10 9 Yes 3

Pop-E 6 10 Yes 8

ESP Piano 6 6 Yes 3

KCCA Piano 4 6 Yes 3

Drumming 3 6 3

Genetic Programming 7 6 6

Sequential Covering GAs 6 6 6

Generative Performance GAs 8 4 8

MAS with Imitation 8 1 9

Ossia 6 4 Yes 10

CMERS 6 6 Yes 10

pMIMACS 8 1 10

of the instrument in the jazz genre. Despite, and probably because, of its simplicity,
MIDI is still the most popular representation.

To help structure the review, four primary terms of reference were selected: testing
status, expressive representation, polyphonic ability, and performance creativity. Hav-
ing applied these, it can be seen that only a subset of the systems have had any formal
testing, and for some of them designing formal tests is a challenge in itself. This is not
that unexpected since testing a creative computer system is an unsolved problem. Also,
about half of the systems have only been tested on monophonic tunes. Polyphony and
homophony introduce problems both in terms of synchronization and music feature
analysis. Further, in regard to music feature analysis, most of the CSEMPs had an
expressive representation up to one bar/phrase, and over half did not look at the musi-
cal hierarchy. However, avoiding musical hierarchy analysis can have the advantage of
increasing automation. We have also seen that most CSEMPs are designed for simula-
tion of human expressive performances, general or specific—a valuable research goal,
and one which has possibly been influenced by the philosophy of human simulation in
machine intelligence research.

The results for the primary terms of reference are summarized in Table V. The nu-
merical measures in columns 1, 2, and 4 are an attempt to quantify observations, scaled
from 1 to 10. The more sophisticated the expressive representation of music features
(levels of the hierarchy, harmony, etc), the higher the number in column 1. The more ex-
tensive the testing (including informal listening, RenCon submission, formal listening,
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Fig. 4. Evaluation of reviewed systems relative to terms of reference (“+” means polyphonic).

correlation, and/or successful utilization in the field), the higher the number in column
2. The greater we perceived the potential of a system to enable the creative generation
of novel performances, the higher the number in column 4. Obviously such measures
contain some degree of subjectivity but should be useful indicators for anyone wanting
an overview of the field, based on the four elements discussed at the start of this article.
Figure 4 shows a 3D plot of summary Table V.

5. CONCLUSIONS

There have been significant achievements in the field of simulating human musical
performance in the last 25 years, and there are many opportunities ahead for future
improvements in simulation. In fact, one aim of the RenCon competitions is for a com-
puter to win the Chopin competition by 2050. Such an aim begs some philosophical
and historical questions, but nonetheless captures the level of progress being made in
performance simulation. The areas of expressive representation and polyphonic perfor-
mance appear to be moving forward. However the issue of testing and evaluation still
requires more work and would be a fruitful area for future CSEMP research.

Another fruitful area for research is around the issue of the automation of the music
analysis. Of the eight CSEMPs with the highest expressive representation, almost
half of them require some manual input to perform the music analysis. Also, manual
marking of the score into phrases is a common requirement. There has been some
research into automating musical analysis such as GTTM [Hamanaka et al. 2005]. The
usage of such techniques, and the investigation of further automation analysis methods
specific to expressive performance, would be a useful contribution to the field.

The field could also benefit from a wider understanding of the relationship between
performance and composition elements in computer music, for reasons for efficiency,
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controllability, and creativity. This review began by developing four terms of reference
inspired from research into computer composition systems, and has been brought to
a close with a pair of systems that question the division between expressive perfor-
mance and composition. Computer composition and computer performance research
can cross-fertilize each other: performance algorithms for expressing structure and
emotion/mood can help composition, as well as composition providing more creative
and controlled computer performance. The question is also open as to what forms of
nonhuman expression can be developed and provide whole new vistas of the meaning
of the phrase “expressive performance,” perhaps even for human players.

One final observation regards the lack of neurological and physical models of per-
formance simulation. The issue was not included as a part of our terms of reference,
since it is hard to objectively quantify. But we would like to address this in closing.
Neurological and physical modeling of performance should go beyond ANNs and in-
strument physical modeling. The human/instrument performance process is a complex
dynamical system for which there have been some deeper psychological and physical
studies. However, attempts to use these hypotheses to develop computer performance
systems have been rare. More is being learned about the neural correlates of music
and emotion [Koelsch and Siebel 2005; Britton et al. 2006; Durrant et al. 2007], and
Eric Clarke [1993] has written on the importance of physical embeddedness of human
performance. But, although researchers such as Parncutt [1997] (in his virtual pianist
approach) and Widmer [Widmer and Goebl 2004] have highlighted the opportunity for
deeper models, there has been little published progress in this area of the CSEMP field.

So to conclude: the overarching focus so far means that there are opportunities for
some better-tested, more creative, neurological and biomechanical models of human
performance. These will be systems which not only help to win the Chopin contest,
but to utilize the innate efficiencies and power of computer music techniques. Music
psychologists and musicologists will be provided with richer models; composers will be
able to work more creatively in the microspecification domain, and more easily and
accurately generate expressive performances of their work. And the music industry
will be able to expand the power of humanization tools, creating new efficiencies in
recording and performance.
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