Honeypot-Aware Advanced Botnet Construction and Maintenance

Cliff C. Zou

Ryan Cunningham

School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816-2362
{czou,rcunning} @cs.ucf.edu

Abstract

Because “botnets” can be used for illicit financial gain,
they have become quite popular in recent Internet attacks.
“Honeypots” have been successfully deployed in many de-
fense systems. Thus, attackers constructing and maintain-
ing botnets will be forced to find ways to avoid honey-
pot traps. In this paper, we present a hardware and soft-
ware independent honeypot detection methodology based
on the following assumption: security professionals de-
ploying honeypots have liability constraints such that they
cannot allow their honeypots to participate in real (or too
many real) attacks. Based on this assumption, attackers
can detect honeypots in their botnet by checking whether
the compromised machines in the botnet can successfully
send out unmodified malicious traffic to attackers’ sensors
or whether the bot controller in their botnet can successfully
relay potential attack commands. In addition, we present
a novel “two-stage reconnaissance” worm that can auto-
matically construct a peer-to-peer structured botnet and de-
tect and remove infected honeypots during its propagation
stage. Finally, we discuss some guidelines for defending
against the general honeypot-aware attacks.

1 Introduction

In the last ten years, Internet users have been attacked
unremittingly by widespread email viruses and Internet-
scanning worms. Some of the more devastating email
viruses include Melissa in 1999, Love Letter in 2000,
W32/Sircam in 2001, and MyDoom, Netsky and Bagle in
2004, etc. Similiarly damaging internet-scanning worms in-
clude Code Red in 2001, Slammer, Blaster in 2003, Witty
and Sassar in 2004 [6]. Strangely, we have not seen a
major virus or worm outbreak since the Sassar worm in-
cident in May 2004. This is probably not because the Inter-
net is much more secure, but more likely because attackers
no longer focus on infecting a large number of computers

just to attract media attention. Instead, their attention has
shifted to compromising and controlling victim computers,
an attack scheme which provides more potential for per-
sonal profit.

This new and lucrative attack trend has produced a large
number of botnets in the current Internet. A “botnet” is
a network of computers that are compromised and con-
trolled by an attacker [21]. Each computer is infected with
a malicious program called a “bot”, which actively commu-
nicates with other bots in the botnet or with several “bot
controllers” to receive commands from the botnet owner.
Attackers maintain complete control of their botnets, and
can conduct Distributed Denial-of-Service (DDoS) attacks,
email spamming, keylogging, abusing online advertise-
ments, spreading new malware, etc [21].

Turning our focus now to recent trends in computer se-
curity, honeypot is a general and effective attack detection
technique. A “honeypot” is a special constructed computer
or network trap designed to attract and detect malicious at-
tacks. In recent years, honeypots have become popular,
and security researchers have generated many successful
honeypot-based attack analysis and detection systems (such
as [9, 22, 13, 3, 29, 17].) As more people begin to use hon-
eypots in monitoring and defense systems, attackers con-
structing and maintaining botnets will try to find ways to
avoid honeypot traps.

In this paper, we show how attackers might attempt to
remove honeypot traps when constructing and maintaining
botnets. This knowledge is useful for security professionals
wanting to prepare for more advanced botnet attacks. Un-
like hardware or software specific honeypot detection meth-
ods [24, 8, 2], the honeypot detection methodology pre-
sented here is based on a general principle that is hardware
and software independent: honeypot owners have liability
constraints such that they cannot allow their honeypots to
send out real attacks (or send out too many real attacks.)
As laws are developed to combat cybercrime in the com-
ing years, security experts deploying honeypots will proba-
bly incur more liability than they have today, because they



knowingly allow their honeypots to be compromised by at-
tackers. If they fail to perform due dilligence by securing
their honeypot against damaging other machines, they will
be considered negligent. To our knowledge, this is the first
paper to systematically study honeypot detection based on
such a general methodology.

Based on this principle, attackers can command their
botnets to actively send out malicious traffic (or faked mali-
cious traffic) to one or several other compromised comput-
ers. These computers behave as “sensors”. Attackers can
then determine whether a bot is actually a honeypot or a
verified vulnerable victim machine based on whether or not
the sensors observe the complete and correct attack traffic
transmitted from this bot.

To detect a hijacked bot controller in a hierarchical bot-
net, attackers can issue a test command via the bot controller
under inspection that causes botnet members to send trivial
traffic to the attackers’ “sensors”. The hijacked controller
can then easily be detected if the command is not carried
out or is not carried out correctly. In addition, attackers can
detect bot controllers hijacked via DNS redirection [10] by
checking whether the IP addresses resolved by DNS queries
match the real IP addresses of their bot controllers.

Compared with the currently popular hierarchical bot-
nets, a P2P botnet is much harder for the security commu-
nity to monitor and eliminate. In this paper, we present a
simple but effective P2P botnet construction technique via
a novel “two-stage reconnaissance” Internet worm attack,
which is also capable of detecting and removing infected
honeypots during the worm propagation stage.

The honeypot avoidance technique presented in this pa-
per is not specific to botnets but applicable for detection of
general honeypots. It can be conducted after a remote hon-
eypot is compromised. Attackers can use it when they man-
ually compromise remote computers. In the area of large-
scale automatic attacks, it is not effective to use this method-
ology in a traditional worm, since a honeypot has already
obtained the worm binary code once it is compromised. On
the other hand, the actions taken after the machine is com-
promised are more important to a botnet attacker than the
compromising bot code itself. These actions cannot be pre-
dicted or obtained just based on the initial bot code cap-
tured by a honeypot. For this reason, we believe botnets
will probably be the first major battlefield between attack-
ers and security professionals using honeypots. Because of
this, we decided to focus on botnets in this paper rather than
other types of attacks.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the honeypot de-
tection methods for current hierarchical botnets. Section 4
introduces an advanced honeypot-aware worm that can con-
struct a P2P botnet. In Section 5 we discuss several guide-
lines to counterattack honeypot-aware attacks from the se-

curity professional’s perspective. In the final Section 6 we
summarize our conclusions.

2 Related Work

Botnet is a new trend in Internet attacks. In 2003, Puri
from SANS Institute [23] presented an overview of bots
and botnets; McCarty [18] discussed how to use a honeynet
to monitor botnets. Currently, there are two techniques to
monitor botnet activities. The first technique is to allow
honeypots or honeynets to be compromised and join in a
botnet [7, 12, 21]. Behaving as normal “bots” in the botnet,
these honeypot spies provide valuable information of the
monitored botnet activities. With the help from Dynamic
DNS service providers, the second technique is to hijack bot
controllers in botnets to monitor the command and control
communications in botnets [10]. This was accomplished by
redirecting the bot controllers’” DNS mapping to a botnet
monitor.

Honeypots and honeynets are effective detection and de-
fense techniques, and hence there has been much recent
research in this area. Provos [22] presented “honeyd,” a
honeypot software package that makes large-scale honeynet
monitoring possible. Dagon et al. [9] presented the “honey-
Stat” system to use coordinated honeypots to detect worm
infections in local networks. Jiang and Xu [13] presented a
virtual honeynet system that has a distributed presence and
centralized operation. Bailey et al. [4] presented a globally
distributed, hybrid, honeypot-based monitoring architecture
which deploys low-interaction honeypots as the frontend
content filters and high-interaction honeypots to capture de-
tailed attack traffic. Vrable er al. [29] presented several
effective methods to design large-scale honeynet systems
capable of obtaining high-fidelity attack data, which they
called “Potemkin”. Tang and Chen [27] presented a novel
“double-honeypot” detection system to effectively detect
Internet worm attacks. Anagnostakis et al. [3] presented a
way to use a “shadow honeypot” to conduct real-time host-
based attack detection and defense.

There has been some research in discovering and con-
cealing honeypots. Provos [22] discussed how to vividly
simulate the routing topology and services of a virtual net-
work by tailoring honeyd’s response. GenlI honeynets [20]
allow a limited number of packets to be sent out from an
infected honeynet. From the attacker’s perspective, some
hardware or software specific means have always been
available to detect infected honeypots (e.g. by detecting
VMware or another emulated virtual environment [24, 8], or
by detecting the honeypot program’s faulty responses [2].)
However, there has been no systematic research on honey-
pot detection based on a general methodology.

Krawetz [15] introduced the commercial anti-honeypot
spamming tool, “Send-Safe’s Honeypot Hunter”. On a



spammer’s computer, the tool is used to detect honeypot
open proxies by testing whether the remote open proxy can
send email back to the spammer. This anti-honeypot tool
uses the similar approach presented in this paper. It can
be treated as a special realization of the methodology pre-
sented here, but it is only effective for detecting open proxy
honeypots.

Bethencourt et al. [5] presented a method for attackers to
use intelligent probings to detect the location of Internet se-
curity sensors (including honeypots) based on their public
report statistics. In this paper, we present a general hon-
eypot detection approach that does not require a honeypot
to publish its monitored statistics. Lance Spitzner [25] ad-
dressed the basic legal issues of honeypots, explaining that
honeypots have potential problems in terms of privacy and
liability. In this paper, we only consider honeypot liability.

3 Hierarchically Structured Honeypot-
Aware Botnets

3.1 Hierarchical botnets introduction

Most botnets currently known in the Internet are con-
trolled by attackers via a hierarchical network structure.
Fig. 1 shows the basic network structure of a typical botnet
(for simplicity, we only show a botnet with two bot con-
trollers). All compromised computers in a botnet are called
“bots”. They frequently attempt to connect with one or sev-
eral “bot controllers” to retrieve commands from the bot-
net attacker for further actions. These commands are usu-
ally issued from another compromised computer (to hide
attacker’s real identity) to all bot controllers. To prevent de-
fenders from shutting down the command and control chan-
nel, attackers usually use multiple redundant bot controllers
in their botnets.

attacker

Figure 1. lllustration of a hierarchical botnet

To set up bot controllers flexibly, attackers usually hard-
code bot controllers’ domain names rather than their IP ad-
dresses in all bots [10]. Attackers also try to keep their bot
controllers mobile by using dynamic DNS (DDNS) [28],

a resolution service that facilitates frequent updates and
changes in machine location. Each time a bot controller
machine is detected and shut down by its user, attackers can
simply create another bot controller on a new compromised
machine and update the DDNS entry to point to the new
controller.

In the rest of this section, we introduce how attackers can
thwart the two botnet trapping techniques presented in the
the beginning of Section 2, respectively.

3.2 Detection of honeypot bots

First, we introduce a method to detect honeypots that are
infected and acting as bots in a botnet. The general principle
is to have an infected computer send out certain malicious or
“faked” malicious traffic to one or several remote computers
that are actually controlled by the botnet attacker. These re-
mote computers behave as “sensors” for the attacker. If the
sensors receive the “complete” and “correct” traffic from
the infected host, then the host is considered “trusted” and
is treated as a normal bot instead of a honeypot. Since
honeypot administrators do not know which remote com-
puters contacted are the attacker’s sensors and which ones
might be innocent computers, they cannot defend against
this honeypot detection technique without incuring the risk
of attacking innocent computers.

bot . .
malicious traffic sensor

g 2

2R
'q(/f S e ’{9
72N 27O
00 AN
e N

RN
~ A \6\0
bot controller

Figure 2. lllustration of the procedure in de-
tecting honeypot bots in a hierarchical botnet

This honeypot detection procedure is illustrated in Fig. 2.
A bot sends out malicious traffic to many targets, including
the attacker’s sensor. When the attacker’s sensor receives
the traffic and verifies the correctness of the traffic (ensuring
that it was not modified by a honeypot), the sensor informs
the bot controller of the bot’s IP address. The bot controller
then sends the authorization key to the checked bot so that
the bot can join the botnet. To prevent the possibility of
a single point of failure, an attacker could set up multiple
sensors for this test.

This honeypot detection procedure can be performed on
a newly infected computer before it is allowed to join a bot-



net. Such a botnet has a built-in authorization mechanism.
The attacker (or the botnet controller) uploads the autho-
rization key to the host and allows it joining into the botnet
only after the host passes the honeypot detection test. In
addition, attackers may perform the honeypot detection pe-
riodically on botnets to discover additional honeypot bots.
This could be done whenever attackers renew their bots’
authorization keys or encryption keys, or update the botnet
software.

Next, we will introduce several illicit activities attackers
might utilize to detect honeypot bots in their hierarchical
botnets.

3.2.1 Detection through infection

When a computer is compromised and a bot program is in-
stalled, most bot programs will continuously try to infect
other computers in the Internet. In this case, a honeypot
must modify or block the outgoing malicious traffic to pre-
vent infecting others. Based on this liability constraint im-
posed on honeypot security professionals, an attacker could
let compromised computers send malicious infection traffic
to the attacker’s sensors.

Some honeypots, such as the GenlI honeynets [20], have
Network Intrusion Prevention System (NIPS) that can mod-
ify outbound malicious traffic to disable the exploit. To de-
tect such honeypots, attackers’ sensors need to verify that
the traffic sent from bots are not altered (e.g., using MD5
signature).

It is also important that a newly compromised bot does
not send malicious traffic to the sensors alone after the ini-
tial compromise. It must hide the honeypot checking proce-
dure to prevent defenders from allowing the initial honeypot
detection traffic going out. To hide the sensor’s identity, a
bot could put the sensors’ IP addresses at a random point
in the IP address list to be scanned. For a bot that infects
via email, the sensors’ email addresses could be put at a
random point in the outgoing email address list. This pro-
cedure will delay the newly infected computer’s participa-
tion in the botnet, but an attacker would be willing to incur
this slight delay to secure their botnet, because botnets have
long term use to the attacker.

This honeypot detection technique is difficult for hon-
eypot defenders to deal with. Honeypot defenders cannot
block or even modify the outgoing infection traffic. With-
out accurate binary code analysis, honeypot defenders will
not be able to know which target IPs belong to the attacker’s
sensors. An attacker can make the code analysis even harder
by obfusticating or encrypting sensors’ IP addresses in the
code. Furthermore, this honeypot detection technique is
also natural to a botnet during its the construction time since
a newly infected bot will try to infect others whether or not
it is using this honeypot detection procedure.

3.2.2 Detection through other illicit activities

Based on our general honeypot detection principle, attack-
ers can have their botnets send out other types of illicit traf-
fic to sensors for honeypot detection. These illicit activities
include:

Low rate port scanning. By hiding sensors’ IP addresses in
the port-scan IP address list, a bot can detect whether or not
it is in a honeypot that limits outgoing connection requests.
For example, GenlI honeynet [20] limits the number of out-
bound connection rate.

Some normal computers are configured (e.g., installed a
firwall, or a worm detection software such as [16]) to limit
outgoing connection rate as well. To avoid mislabeling such
computers as honeypots, and also to avoid possible detec-
tion by users, attackers should let their bots conduct a very
low rate stealthy port-scan for honeypot detection.

Web requests. An attacker could also have a bot contin-
uously request content from a web server that is actually
compromised and controlled by the attacker. From the net-
work administrator’s perspective of one machine, this ac-
tivity looks just like a normal user’s web requests, how-
ever honeypot defenders will have hard time distinguishing
whether or not this is an attack, because this bot could ac-
tually be conducting a real DDoS attack together with thou-
sands of other computers in the same botnet. If this is a real
DDoS attack but not blocked by honeypot defenders, they
will be liable for possible damage caused by the attack.

Email spamming. An attacker could also have a bot send
out spam email to one or several target email addresses
owned by the attacker. These e-mail addresses behave as the
honeypot detection sensors. Outgoing email spam, such as
“phishing” email [11], could make honeypot security pro-
fessionals liable for substantial financial losses if they reach
real users.

3.3 Detection of hijacked bot controllers

Now we introduce techniques to detect hijacked bot con-
trollers. With the help from Dynamic DNS providers,
Dagon et al. [10] presented an effective botnet sinkhole
that can change the domain name mapping of a detected
bot controller to point to a monitoring machine. This way,
the monitor receives connection requests from most (if not
all) bots in the botnet. Conceptually speaking, the moni-
tor becomes a hijacked bot controller, which is similar to a
honeypot in term of functionality.

From an attacker’s perspective, the botnet monitor is
very dangerous, because security professionals can learn
most of the IP addresses of bots in a botnet — the moni-
tor owners can easily provide a “black-list” of these IP ad-
dresses to the security community or potential victims. For



this reason, botnet attackers will do everything they can to
eliminate a hijacked bot controller from their botnets. In
this section, we present two different techniques that attack-
ers might use to achieve this goal.

3.3.1 Bot controller DNS query check

When a bot controller is hijacked by the DNS redirection
method presented in [10], the IP address of the bot con-
troller returned by DNS query will not be the IP address
of the real bot controller. Although bots in a botnet know
the domain names instead of the actual IP addresses of bot
controllers, the botnet owner can easily learn all the IP ad-
dresses of the botnet’s controllers, because these comput-
ers are compromised by the attacker and are running the
attacker’s bot controlling program.

Therefore, a botnet attacker can keep an up-to-date DNS
mapping table of all bot controllers. Using one compro-
mised computer as a sensor, the attacker can have this sen-
sor continuously send DNS queries to resolve the name and
IP mapping of all bot controllers in the botnet and then com-
pare the results with the real domain name mapping table.
Besides the short time period right after the attacker changes
the bot controller’s IP address, this continuous DNS query
procedure is always able to detect whether or not a hijacked
bot controller is present in the botnet. If a hijacked con-
troller is detected, the attacker can immediately use other
bot controllers to issue a command to update the domain
names in all bots, thus obviating further compromise from
the hijacked controller.

3.3.2 Bot controller command channel check

The above DNS query check is an effective way to detect
DNS redirection of bot controllers. However, it is possible
for security defenders to conduct a more stealthy monitor-
ing by actually capturing and monitoring a bot controller
machine. In this case, the DNS query check will not work.

To detect such a physically hijacked bot controller, an
attacker can use the same honeypot detection principle we
described before. The botnet owner checks whether or not a
bot controller passes the attacker’s commands to bots. The
monitor presented in [10] is called “sinkhole” because it
does not pass any attacker’s commands to bots. In fact, a
hijacked bot controller puts a much more serious liability
burden on security defenders than a normal compromised
honeypot. If it passes an attacker’s command to bots in a
botnet, the defender could potentially be liable for attacks
sent out by thousands of computers in the botnet. For this
reason, security defenders do not dare to let a hijacked bot
controller send out a single command. Even if the command
seems harmless from previous experience, it is always pos-
sible the botnet software has been modified such that a pre-
vious known trivial command actually deletes files on all

of the compromised computers or launches DDoS attacks
against risky targets.

Based on this, an attacker can issue a trivial command to
the bot controller under inspection without passing the com-
mand to other bot controllers. The trivial command orders
a small number of bots to send a specific service request
to the attacker’s sensor (e.g., a compromised web server).
Bots will not be exposed by this action since they simply
send out some normal service requests. If the sensor does
not receive the corresponding service requests, the attacker
knows that the bot controller has been hijacked (or is at least
not working as required).

4 P2P-Structured Honeypot-Aware Botnets

Cook et al. [7] discussed three different botnet commu-
nication topologies and their properties: centralized, peer-
to-peer (P2P), and random. In a random topological botnet,
a bot knows no more than one other bot [7]. Since such a
botnet has extreme high latency in communication with no
guarantee of delivery, we will not consider this topology in
botnet study.

Most current botnets in the Internet use the hierarchical
structure (or the centralized topology discussed in [7]) in-
troduced in the previous Section 3.1. To increase the avail-
ability of the commandé&control channel in a hierarchical
botnet, an attacker has to increase the number of bot con-
trollers in the botnet. This will increase the financial cost
of maintaining the botnet, since the attacker will need to
purchase more Dynamic DNS domain names. In addition,
the botnet is susceptible to bot controller hijacking, which
exposes the identity of the entire botnet to security profes-
sionals, as was illustrated in [10].

On the other hand, a P2P botnet is much harder for se-
curity professionals to track. There is no centralized bot
controller they can monitor. A honeypot bot in the botnet
can only monitor a very small portion of the entire botnet.
Attackers also do not need to spend money buying Dynamic
DNS services. Therefore, we believe more P2P botnets will
be created in the near future (if they do not already exist.)

4.1 Constructing P2P botnets based on
“buddy list”

We present a simple but effective worm that can build
a P2P botnet as it spreads. Basically, each worm-infected
computer has a “buddy list” containing IP addresses of n
other infected hosts. As the worm spreads, it gradually
builds a P2P botnet structured by the buddy list (which
could be described by a directed graph in which every node
can pass botnet commands to n neighbors.)

At the beginning, the worm can spread through a small
botnet that has n 4+ 1 bots — each bot contains the IP ad-



dresses of the other n members in the botnet. Or, the worm
could simply spread through several infected hosts where
the other IP addresses in the buddy list are empty.

The P2P botnet buddy list can be built in the following
way: When an infected host A infects a new victim B, its
buddy list is passed to the victim. Host A chooses with
a probability whether or not to replace one IP address in
its own buddy list with host B’s IP address. If host B has
already been infected before, host B updates a part of its
own buddy list with the new one sent from host A. This
buddy list constructing procedure mixes the relationship of
infected computers in a buddy list so security professionals
cannot infer (or “traceback”) the infection links when they
capture some infected computers.

Besides the IP addresses, the buddy list can contain ad-
ditional information to facilitate the propagation and main-
tenance of a botnet. For example, the buddy list on a host
can contain the rough estimate of the bandwidth between
this host and its neighboring bots. In this way, when the
host needs to download the updated version of the bot pro-
gram, it can select the host in the buddy list with the highest
bandwidth from which to download the update.

4.2 Command and control in P2P botnets

Before introducing honeypot detection techniques, let us
first discuss how to maintain the command and control in a
P2P botnet constructed with the buddy list technique above.

To issue a command to a P2P botnet, the botnet attacker
can inject the command to several bots in the botnet that he
knows, (e.g. the several initial infected computers for used
to spread the worm.) These bots will pass the commands to
all bots listed in their buddy lists, and so on. In this way,
commands will flood the botnet via the buddy-list topol-
ogy. Since each bot sends the same command only once to
hosts in its buddy list, this command flooding will stop nat-
urally. The botnet attacker can increase the controllability
and response speed of his botnet by increasing the size of
the buddy list.

In a peer-to-peer network, some computers are not able
to receive connection requests since they are behind Net-
work Address Translation (NAT) boxes or firewalls; some
computers have changeable IPs since they are using Dy-
namic Host Configuration Protocol (DHCP). For a P2P bot-
net, an attacker can implement many techniques to solve
the above issues, as people have studied the communica-
tion issues in general P2P networking for a long time. For
example, a bot behind a NAT can actively contact bots in
its buddy list instead of waiting for a command. For an-
other example, whenever its address changes, a bot with a
DHCP-assigned IP address immediately informs all bots in
its buddy list. These bots must put the new IP address in
their buddy lists upon receiving such information. In this

way, a DHCP-assigned bot can make sure that at least bots
in its buddy list can pass the attacker’s command to it.

Of course, to prevent a botnet from being hijacked by
other hackers or security professionals, a botnet needs to
implement authentication and encryption mechanisms in its
communication.

The P2P botnet constructed as introduced above is easy
for attackers to control and robust when facing monitor-
ing and defense from security defenders. First, an attacker
can easily learn how many zombie machines have been col-
lected in the botnet and their IP addresses. The attacker can
connect to several known infected computers, asking them
to issue a command to let all bots sending a specific ser-
vice request to the attacker’s sensor (the similar method as
presented in Section 3.3.2). On the other hand, security pro-
fessionals cannot use this technique for monitoring, even if
they know how to send such a command, due to their liabil-
ity constraint. Second, an attacker can randomly choose any
one or several bots to infill commands into the botnet — it is
very hard for security defenders to cut of the control chan-
nel unless they hijack the botnet and take control of it by
themselves. Such an active defense requires security pro-
fessionals to issue commands to the botnet and update bot
code on all (potentially hundreds or even thousands) com-
promised computers, which clearly puts a heavy liability
burden on security professionals. Third, suppose security
professionals remove many infected computers in a botnet.
The attacker still has control over the remaining P2P botnet,
even if the remaining botnet is broken into many separated
smaller ones.

4.3 Two-stage reconnaissance worm to
detect honeypots in constructing
P2P botnets

Host A Host B ©) Host C
g, Speahead spearhead @
request
main-force

Figure 3. lllustration of the propagation pro-
cedure of a two-stage reconnaissance worm

We have introduced a means for attackers to construct
a P2P botnet using a worm with buddy list. Now we intro-
duce a way for the worm to detect and remove infected hon-
eypots while propagating. To achieve this goal, the worm is
designed to have two parts: the first part compromises a
vulnerable computer and then decides whether this newly
infected machine is a honeypot or not; the second part con-



tains the major payload and also the authorization compo-
nent allowing the infected host to join in the constructed
P2P botnet. Due to the different roles in a worm propaga-
tion, we call the first part the “spearhead”, the second part
the “main-force” of the worm.

A simple way to verify whether a newly compromised
host is a honeypot or not is to check whether or not the
worm on it can infect other hosts in the Internet. Fig. 3
illustrates the propagation procedure of a two-stage recon-
naissance worm in infecting host B and checking whether
it is a honeypot or not. First, the vulnerable host B is in-
fected by the spearhead of the worm, which contains the
exploiting code and the buddy list. Second, the spearhead
on host B keeps scanning the Internet to find targets (such
as host C) to infect with the spearhead code. Third, after
the spearhead on host B successfully compromises m hosts
(include both vulnerable and already-infected ones), it tries
to download the main-force of the worm from any host in
its buddy list that has the main-force component. The main-
force code lets the worm join the constructed botnet via the
authorization key contained in the main-force.

By deploying such a two-stage reconnaissance worm, the
botnet is constructed with a certain time delay as the worm
spreads. This means that some infected hosts will not be
able to join in the botnet, since they could be cleaned before
the main-force is downloaded. However, this does not af-
fect the botnet, since it makes no difference to the attacker
whether or not the botnet contains bots that will be quickly
removed by security defenders.

In fact, it is not a new idea to spread a worm in two
stages. Blaster worm and Sasser worm used a basic FTP
service to transfer the main code of the worm after com-
promising a remote vulnerable host [6]. The two-stage re-
connaissance worm presented here can be treated as an ad-
vanced two-stage worm by adding the honeypot detection
functionality into the first-stage exploit code.

4.4 Advanced two-stage reconnaissance
worm in response to “double
honeypot” defense

Tang and Chen [27] presented a “double-honeypot” sys-
tem where all the outgoing traffic from the first honeypot is
redirected to a dual honeypot. If the dual honeypot is set up
to emulate a remote vulnerable host, then the dual honey-
pot can fool the above two-stage reconnaissance worm into
believing that the first honeypot is a real infected host.

This vulnerability of the two-stage reconnaissance worm
is due to: (1) a spearhead makes the decision by itself
whether a remote host is infected or not; and (2) a dual hon-
eypot can emulate any outside remote host with arbitrary
IP address. To detect such a dual-honeypot defense system,
attackers can design an even more advanced two-stage re-

Host A Host B
Spearhead code
g P g
L s
Y A
\\E%k/ P:
Host C

Figure 4. The procedure in counterattacking
dual-honeypot defense by an advanced two-
stage reconnaissance worm (host A is the
bot under inspection; host C is in A’s buddy
list that has the main-force code)

connaissance worm that propagates as following (illustrated
in Fig. 4):

e When an infected host A finds and infects a target host
B, it records down host B’s IP address. Host A contin-
ues finding and infecting others in this way.

e Host B sets up a TCP connection with every host in
host A’s buddy list, telling them the tuple (A’s IP, B’s
IP), which means "host A has sent the correct exploit-
ing code to host B”. Suppose host C is one of the hosts
in A’s buddy list.

e When host C obtains the main-force of the worm, it
informs host A of host B’s IP address. This report can
be done only by hosts having the main-force code (e.g.,
the authorization key is in the main-force code).

e If host A finds B’s IP address in its recorded infec-
tion IP list, it knows that it has really infected another
host. When host A has successfully infected m hosts, it
passes the honeypot detection procedure and then tries
to download the main-force code from any host in its
buddy list that has the complete code.

This reconnaissance worm will not be fooled by a dual-
honeypot system because:

(1) The spearhead in host A chooses IP addresses to scan
by itself, thus the real IP address of a dual honeypot
has a negligible probability to actually be scanned by
host A without IP address redirection;

(2) When host B informs hosts in host A’s buddy list of the
address tuple (A’s IP, B’s IP), it cannot cheat about its
IP address due to the TCP connection;

(3) Only an infected host that is not a honeypot will have
the main-force code, and hence, host A can trust that
host C is not a honeypot (without this trusted host C,
security defenders could use honeypots for all three
hosts in Fig. 4 to fool the spearhead in host A).



In summary, the advanced reconnaissance worm works
because host B cannot lie about its IP address and host C is
trusted.

Security defenders in a local network could use a hon-
eynet to cover a large number of local IP addresses. To pre-
vent the spearhead in host A from actually scanning and
infecting a local IP address occupied by a honeypot (es-
pecially if the worm deploys the “local preference” scans
[32]), the worm can conduct the infection report shown in
Fig. 4 for global infection only, i.e., host B is required to be
far away from host A.

4.5 Modeling of the constructed P2P
botnet growth

In this section, we present an analytical model for mod-
eling the growth of the botnet as the two-stage reconnais-
sance worm spreads. As explained above, an infected host
joins in the botnet only when it has downloaded and exe-
cuted the main-force of the worm. Thus the botnet grows a
step behind the propagation of the worm’s spearhead.

The modeling presented here tries to show that a two-
stage worm will not slow down botnet construction, even
though it adds a delay. The modeling results, as presented
below, show that all infected computers (not including de-
tected honeypots) will join in the botnet in the end, and the
machines will join the botnet shortly after the initial infec-
tion.

The spearhead of a two-stage reconnaissance worm
propagates in way similar to that of a traditional worm, thus
it can be modeled by the popular epidemic model as used
in [19, 26, 30], etc. Since worm modeling is not the focus
of this paper, we present a simple model, where the two-
stage reconnaissance worm uniformly scans the IP space.
Papers such as [14, 32] have presented modeling of local
preference scanning, bandwidth-limited spread, and other
worm scanning strategies. The model presented here can be
extended based on the models in those papers for various
non-uniform scanning strategies.

Let I(t) denote the total number of infected hosts at time
t — whether a host is infected only by the spearhead or by
the full worm; I(t) denotes the number of infected hosts
that have joined in the botnet by time ¢, i.e., they have the
main-force of the worm. The propagation of the spearhead
can be modeled as [26, 30, 32]:

di(t) _n
T ﬁf(t)[N —I(1)] )

where [V is the total vulnerable population, 7 is the worm’s
average scan rate per infected host, €2 is the size of the IP
space scanned by the worm.

First, we derive the propagation model of (t) via “in-
finitesimal analysis” for the two-stage reconnaissance worm

with m = 1, i.e., a spearhead-infected host downloads the
main-force right after it sends out the spearhead and com-
promises another host. At time ¢, there are I(t) infected
hosts, among them [I(¢) — I(t)] are infected only by the
spearhead — they have not infected others yet. At the next
small time interval §, each spearhead-only infected host will
have the probability p = 1ndN/Q to infect another host
since there are N targets to infect (a target host that has
already been infected still counts). Therefore, on average
[I(t) — I(t)]p spearhead-only infected hosts will infect oth-
ers and download the main-force of the worm during the
small time interval §. Thus we have,

T(t+8)~I(t) = 1)~ 1(0))-p = 2IO-TOIN-5 @)

Taking § — 0 yields the botnet growth model (m = 1):

()

[I(t) — I(t)]N 3)

For a general two-stage reconnaissance worm that has
m > 1, we can derive the botnet growth model in the sim-
ilar way. For example, if m = 2, then we need to add
an intermediate variable I (t) to represent the number of
spearhead-only infected hosts at time ¢ — each of them has
infected exactly one host at time ¢. Using the similar in-
finitesimal analysis as illustrated above, we can derive the
botnet growth model (m = 2):

CIOR PPN

dt QO

%t(t) = %[I(t)—ll(t)_[‘(t”N_%it) @
O

2 = gl@OWV -1

The above two models assume that the spearhead in host
A can download the main-force immediately after it infects
m target hosts, which means we assume that at least one of
the hosts in A’s buddy list contains the main-force when A
wants to download the main-force. If the size of the buddy
list is not too small, this assumption is probably accurate for
modeling purposes.

We use Matlab Simulink [1] to derive the numerical so-
Iutions of model (3) and model (4). We use the Code
Red worm parameters [31], N = 360,000, n = 358/min,
Q) = 232 in the calculation and assume one initially infected
host. Fig. 5 shows the worm propagation and the botnet
growth over time. This figure shows that the botnet is con-
structed with a certain time delay (depends on m) as the
worm spreads, but in the end all infected hosts will join the



x10"
3.5¢
3,
2.5¢
2,
1.5¢
1F --- Total infected I(t)
4 Botnet growth (m=1)
0.5 — Botnet growth (m=2)
Ohasanssnnsa . . .
200 400 600 800

Time t (minute)

Figure 5. Worm propagation and the con-
structed botnet growth

P2P botnet. This shows that the method described could po-
tentially produce a viable and large botnet capable of avoid-
ing current botnet monitoring techniques quite rapidly.

S Defense Against Honeypot-Aware Attacks

In this section, we discuss how to defend against the gen-
eral honeypot-aware attacks (not just botnets) introduced in
previous sections.

The honeypot-aware botnets introduced in this paper rely
on the basic principle that security professionals have lia-
bility constraints, while attackers do not need to obey such
constraints. The fundamental counterattack by security pro-
fessionals is to somehow invalidate this principle. For ex-
ample, some national organizations or major security com-
panies could set up limited-scale honeypot-based detection
systems that are authorized by legal officials to freely send
out malicious traffic.

Of course, the law currently regulating cyberspace secu-
rity is not mature or defined in many countries, and hence,
some researchers or security defenders have deployed hon-
eypots that freely send out malicious attacks. For these
honeypots, attackers cannot detect them using the honeypot
detection methodology presented in this paper. However,
such honeypot defense practices are negligent and unethi-
cal, which will probably become illegal as the laws regard-
ing cyberspace security and liability gradually mature.

The current popular GenlI honeynet [20] has considered
preventing attack traffic from being sent, but it does not im-
plement this as strictly as the assumption used in the paper:
it limits outgoing connection rate and can block/modify de-
tected outgoing malicious traffic. For this reason, the GenlIl
honeynet might be able to avoid the honeypot detection con-
ducted by attackers (e.g., if a bot only tests if it can send out
malicious code to a sensor), but at the same time, it could

actually infect other computers as well and thus potentially
make the honeynet owners liable for the ensuing damage.

Another promising defense against honeypot-aware at-
tacks is the “double-honeypot” idea [27]. From Section 4.4,
we can see that attackers need to take extra steps in order to
avoid being fooled by double-honeypot traps. By using dual
honeypots, or a distributed honeypot network that can accu-
rately emulate the outside Internet, security defenders can
take proactive roles in deceiving honeypot-aware attacks.
For example, security defenders can build a large-scale dis-
tributed honeynet to cover many blocks of IP space, and al-
low all malicious traffic to pass freely within this honeypot
virtual network. However, this defense will be ineffective
if attackers use their own sensors to detect honeypots (as
introduced in Section 3).

Security defenders could also try to distinguish which
outgoing traffic is for honeypot detection and which outgo-
ing traffic is for a real attack. If this could be done, then hon-
eypots could be configured to allow the honeypot-detection
traffic to be sent while blocking all other malicious traf-
fic. For this purpose, security defenders will need to con-
duct more research on practically implementing automatic
binary code analysis in honeypots.

Internet security attack and defense is an endless war.
From the attackers’ perspective, there is a trade-off between
detecting honeypots in their botnets and avoiding bot re-
moval by security professionas. If an attacker conducts
honeypot-aware test on a botnet frequently, honeypots in
the botnet can be detected and removed quickly. But at the
same time, the bots in the botnet will generate more outgo-
ing traffic, and hence, they have more chance to be detected
and removed by their users or security staff.

In the end, we should emphasize that even if attackers
can successfully detect and remove honeypots based on the
methodology presented in the paper, there is still significant
value in honeypot research and deployment for detecting
the infection vector and the source of attacks. It may not
be possible for honeypots to join the botnet, but the security
hole used to facilitate the infection can be quickly discov-
ered and patched.

6 Conclusion

Due to their potential for illicit financial gain, “botnets”
have become popular among Internet attackers in recent
years. As security defenders build more honeypot-based
detection and defense systems, attackers will find ways to
avoid honeypot traps in their botnets. Attackers can use
software or hardware specific codes to detect the honeypot
virtual environment [2, 8, 24], but they can also rely on a
more general principle to detect honeypots: security pro-
fessionals using honeypots have liability constraints such
that their honeypots cannot be configured in a way that



would allow them to send out real malicious attacks or too
many malicious attacks. In this paper, we introduced var-

ious

means by which attackers could detect honeypots in

their constructed botnets based on this principle. Honey-
pot research and deployment still has significant value for
the security community, but we hope this paper will remind
honeypot researchers of the importance of studying ways
to build covert honeypots, and the limitation in deploying
honeypots in security defense. The current popular research
focused on finding effective honeypot-based detection and
defense approaches will be for naught if honeypots remain
as easily detectible as they are presently.

References

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]
(9]

(10]

(11]

[12]

[13]

Mathworks Inc.: Simulink.
http://www.mathworks.com/products/simulink.

Honeyd security advisory 2004-001: Remote detection
via simple probe packet. http://www.honeyd.org/adv.2004-
01.asc, 2004.

K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,
E. Markatos, and A. Keromytis. Detecting targeted attacks
using shadow honeypots. In Proceedings of 14th USENIX
Security Symposium, August 2005.

M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos.
A hybrid honeypot architecture for scalable network moni-
toring. Technical Report CSE-TR-499-04, U. Michigan, Oc-
tober 2004.

J. Bethencourt, J. Franklin, and M. Vernon. Mapping Inter-
net sensors with probe response attacks. In Proceedings of
USENIX Security Symposium, pages 193-208, August 2005.
CERT. CERT/CC advisories.
http://www.cert.org/advisories/.

E. Cooke, F. Jahanian, and D. McPherson. The zombie
roundup: Understanding, detecting, and disrupting botnets.
In Proceedings of SRUTI: Steps to Reducing Unwanted Traf-
fic on the Internet, July 2005.

J. Corey. Advanced honey pot identification and exploita-
tion. http://www.phrack.org/fakes/p63/p63-0x09.txt, 2004.
D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and
H. Owen. Honeystat: Local worm detection using honey-
pots. In Proceedings of the 7th International Symposium on
Recent Advances in Intrusion Detection (RAID), 2004.

D. Dagon, C. C. Zou, and W. Lee. Modeling botnet propaga-
tion using time zones. In Proceedings of 13th Annual Net-
work and Distributed System Security Symposium (NDSS),
pages 235-249, Feburary 2006.

C. Drake, J. Oliver, and E. Koontz. Mailfron-
tier, Inc. whitepaper: Anatomy of a Phishing email.
http://www.ceas.cc/papers-2004/114.pdf, 2004.

F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent distributed
denial-of-service attacks. Technical Report AIB-2005-07,
CS Dept. of RWTH Aachen University, April 2005.

X. Jiang and D. Xu. Collapsar: A vm-based architecture
for network attack detention center. In Proceedings of 13th
USENIX Security Symposium, August 2004.

[14]

[15]

[16]

(7]

(18]

(19]

(20]
(21]
(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

G. Kesidis, I. Hamadeh, and S. Jiwasurat. Coupled kermack-
mckendrick models for randomly scanning and bandwidth-
saturating internet worms. In Proceedings of 3rd Interna-
tional Workshop on QoS in Multiservice IP Networks (QoS-
IP, pages 101-109, February 2005.

N. Krawetz. Anti-honeypot technology. IEEE Security &
Privacy Magazine, 2(1), 2004.

C. Kreibich, A. Warfield, J. Crowcroft, S. Hand, and I. Pratt.
Using packet symmetry to curtail malicious traffic. In Pro-
ceedings of the Fourth Workshop on Hot Topics in Networks
(HotNets-1V), November 2005.

J. Levine, R. LaBella, H. Owen, D. Contis, and B. Cul-
ver. The use of honeynets to detect exploited systems across
large enterprise networks. In Proceedings of IEEE Workshop
on Information Assurance, June 2003.

B. McCarty. Botnets: Big and bigger. IEEE Security &
Privacy Magazine, 1(4), July 2003.

D. Nicol and M. Liljenstam. Models of active worm de-
fenses. In Proceedings of the IPSI Studenica Conference,
June 2004.

H. Project. Know your enemy: Genll honeynets.
http://www.honeynet.org/papers/gen2, 2005.

H. Project. Know your enemy: Tracking botnets.
http://www.honeynet.org/papers/bots/, 2005.

N. Provos. A virtual honeypot framework. In Proceedings
of 13th USENIX Security Symposium, August 2004.

R. Puri. Bots & botnet: An overview.
http://www.sans.org/rr/whitepapers/malicious/1299.php,
2003.

K. Seifried. Honeypotting with VMware basics.
http://www.seifried.org/security/index.php/
Honeypotting_With_-VMWare _Basics, 2002.

L. Spitzner. Honeypots: Are they illegal?
http://www.securityfocus.com/infocus/1703, 2003.

S. Staniford, V. Paxson, and N.Weaver. How to own the
Internet in your spare time. In Proceedings of USENIX Se-
curity Symposium, pages 149-167, August 2002.

Y. Tang and S. Chen. Defending against internet worms:
A signature-based approach. In Proceedings of the IEEE
INFOCOM, May 2005.

P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dy-
namic updates in the domain name system (DNS update).
http://www.ietf.org/rfc/rfc2136.txt, 1997.

M. Vrable, J. Ma, J. chen, D. Moore, E. Vandekieft, A. Sno-
eren, G. Voelker, and S. Savage. Scalability, fidelity and
containment in the potemkin virtual honeyfarm. In Proceed-
ings of the ACM Symposium on Operating System Principles
(SOSP), October 2005.

C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and early warning for Internet worms. In Proceedings of
10th ACM Conference on Computer and Communications
Security (CCS’03), pages 190-199, October 2003.

C. C. Zou, W. Gong, and D. Towsley. Code Red worm
propagation modeling and analysis. In Proceedings of 9th
ACM Conference on Computer and Communications Secu-
rity (CCS’02), pages 138—147, October 2002.

C. C.Zou, D. Towsley, and W. Gong. On the performance of
Internet worm scanning strategies. Journal of Performance
Evaluation, to appear.



