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Abstract—After many Internet-scale worm incidents in re-
cent years, it is clear that a simple self-propagating worm can
quickly spread across the Internet and cause severe damage to
our society. Facing this great security threat, we need to build
an early detection system that can detect the presence of a worm
in the Internet as quickly as possible in order to give people
accurate early warning information and possible reaction time
for counteractions. This paper first presents an Internet worm
monitoring system. Then, based on the idea of “detecting the
trend, not the burst” of monitored illegitimate traffic, we present
a “trend detection” methodology to detect a worm at its early
propagation stage by using Kalman filter estimation, which is
robust to background noise in the monitored data. In addition, for
uniform-scan worms such as Code Red, we can effectively predict
the overall vulnerable population size, and estimate accurately
how many computers are really infected in the global Internet
based on the biased monitored data. For monitoring a nonuniform
scan worm, especially a sequential-scan worm such as Blaster, we
show that it is crucial for the address space covered by the worm
monitoring system to be as distributed as possible.

Index Terms—Computer network security, early detection, In-
ternet worm, network monitoring.

I. INTRODUCTION

S INCE the Morris worm in 1988 [33], the security threat
posed by worms has steadily increased, especially in the

last several years. Code Red appeared on July 19, 2001 [27],
which began the new wave of Internet-scale worm attacks.
After that, Code Red II, Nimda, Slammer, Blaster, Sasser, and
Witty have repeatedly attacked the Internet [9] and caused great
damage to our society.

Currently, some organizations and security companies, such
as the CERT, CAIDA, and SANS Institute [7], [8], [32], are
monitoring the Internet and paying close attention to any ab-
normal traffic. When they observe abnormal network activi-
ties, their security experts immediately analyze these incidents.
Given the fast-spreading nature of Internet worms and their se-
vere damage to our society, it is necessary to set up a nation-
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scale worm-monitoring and early-warning system. (The U.S.
Department of Homeland Security launched a “Cybersecurity
Monitoring Project” in October 2003 [40]).

A straightforward way to detect an unknown (zero-day)
worm is to use various anomaly detection systems. There are
many well-studied methods or systems in the anomaly “intru-
sion detection” research area, for example, the “IDES” [13],
“NIDES” [5] and “eBayes” [39] from SRI International; the
anomaly intrusion detection method [15] based on “sequences
of system calls”; the automatic model-construction intrusion
detection system based on data-mining of audit data [24], etc.

Anomaly intrusion-detection systems usually concentrate on
detecting attacks initiated by hackers. In the case of Internet
worm detection, we find that we can take advantage of the dif-
ference between a worm’s propagation and a hacker’s intrusion
attack. A worm code exhibits simple attack behaviors; all com-
puters infected by a worm send out infection traffic that has
similar statistical characteristics. Moreover, a worm’s propaga-
tion in the Internet usually follows some dynamic models be-
cause of its large-scale distributed infection. On the other hand,
a hacker’s intrusion attack, which is more complicated, usually
targets one or a set of specific computers and does not follow
any well-defined dynamic model in most cases.

Based on this observation, we present a new detection
methodology, “trend detection,” by using the principle “de-
tecting monitored traffic trend, not burst” [45]. Our “trend
detection” system attempts to detect the dynamic trend of mon-
itored traffic based on the fact that, at the early stage, a worm
propagates exponentially with a constant, positive exponential
rate. The “trend” we try to detect is the exponential growth
trend of monitored traffic.

Based on worm propagation dynamic models, we detect the
presence of a worm in its early propagation stage by using the
Kalman filter estimation algorithm, which is robust to back-
ground noise existing in the monitored data. The Kalman filter
is activated when the monitoring system encounters a surge of
illegitimate scan activities. If the infection rate estimated by the
Kalman filter, which is also the exponential growth rate of a
worm’s propagation at its early stage, stabilizes and oscillates
slightly around a constant positive value, we claim that the il-
legitimate scan activities are mainly caused by a worm, even if
the estimated worm infection rate is still not well converged.
If the monitored traffic is caused by nonworm noise, the traffic
will not have the exponential growth trend, and the estimated
value of the infection rate would converge to zero or oscillate
around zero. In other words, the Kalman filter is used to detect
the presence of a worm by detecting the trend, not the burst, of
the observed illegitimate traffic. In this way, the noisy illegiti-
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mate traffic in the Internet we observe everyday will not cause
too many false alarms in our detection system.

In addition, we present a formula to predict a worm’s vulner-
able population size when the worm is still at its early propaga-
tion stage. We also present a formula to correct the bias in the
number of infected hosts observed by a monitoring system. This
bias has been mentioned in [10] and [29], but neither of them has
presented methods to correct it. In this way, we can know how
many computers in the global Internet are really infected based
on local monitored data. Furthermore, we point out that in de-
signing a worm monitoring system, the address space covered
by a monitoring system should be as distributed as possible in
order to monitor and detect nonuniform scan worms, especially
a sequential scan worm such as Blaster.

The rest of this paper is organized as follows. Section II sur-
veys related work. Section III introduces the worm-propagation
models used in this paper. Section IV describes briefly the mon-
itoring system. Data collection and the bias correction formula
for monitored biased data are described in Section V. Section VI
presents the Kalman filters for early worm detection, and the
formula to predict the vulnerable population size. We conduct
extensive simulation experiments and show the major results in
Section VII. In Section VIII, we discuss limitations and possible
future work. Section IX concludes this paper.

II. RELATED WORK

In recent years, people have paid attention to the necessity of
monitoring the Internet for malicious activities. Symantec Cor-
poration has an “enterprise early warning solution” [1], which
collects IDS and firewall attack data from the security systems
of thousands of partners to keep track of the latest attack inci-
dents. The SANS Institute set up the Internet Storm Center [17],
which could gather the log data from participants’ intrusion de-
tection sensors distributed around the world.

In the academic research area, Moore et al. [29] presented
the concept of “network telescope” to use a small fraction of
unused IP space for observing security incidents in the global
Internet. Pang et al. [30] called the abnormal traffic to unused IP
space “background radiation,” and presented detailed measure-
ment analysis and characterization of such monitored traffic.
From another perspective, Berk et al. [6] proposed a monitoring
system by collecting ICMP “Destination Unreachable” mes-
sages generated by routers for packets to unused IP addresses. In
“honeypot” research, Honeynet [16] is a network of honeypots
to gather comprehensive information of attacks; “Honeyd” pre-
sented by Provos [31] is a virtual honeypot framework to simu-
late many virtual computer systems at the network level.

The monitoring system we present in this paper can be incor-
porated into the current monitoring systems such as the SANS
Internet Storm Center. Our contribution in this context is to
point out the infrastructure specifically for worm monitoring,
and what data should be collected for early detection of worms.
We also emphasize the functionality of egress monitors, which
has been overlooked in previous research. Worm monitors can
be set up as ingress and egress filters on routers, which cover
more IP space and gather more comprehensive information than

the log data collected from intrusion detection sensors or fire-
walls for current monitoring systems.

In the area of worm modeling, Kephart, White, and Chess
of IBM performed a series of studies from 1991 to 1993 on
viral infection based on epidemiology models [21], [20], [22].
Staniford et al. [37] used the classical epidemic model to model
the spread of Code Red right after the Code Red incident on
July 19, 2001; they also proposed several more vicious worms
in the same paper. Zou et al. [46] presented a “two-factor” worm
model that considered both the effect of human countermeasures
and the effect of the congestion caused by extensive worm scan
traffic. Chen et al. [10] presented a discrete-time version worm
model that considered the patching and cleaning effect during a
worm’s propagation.

For a fast spreading worm such as Slammer, it is necessary
to have automatic response and mitigation mechanisms. Moore
et al. [28] discussed the effect of Internet quarantine for con-
taining the propagation of a worm. Williamson [42] proposed
a general rate-limiting “throttling” method to greatly constrain
infection traffic sent out by infected hosts while not affecting
normal traffic. Zou et al. [47] presented a feedback dynamic
quarantine system for automatic mitigation by borrowing two
principles used in the epidemic disease control in the real world:
“preemptive quarantine” and “feedback adjustment.” Staniford
[36] presented automatic worm quarantine for enterprise net-
works by using CounterMalice devices to separate an enterprise
network into many isolated subnetworks. Weaver et al. [41] fur-
ther improved the CounterMalice quarantine by designing hard-
ware-centered quarantine algorithms. Jung et al. [18], [19] pro-
posed a “threshold random walk” algorithm to quickly detect
and block worm scans based on the excessive illegal scans sent
out by worm-infected hosts. EarlyBird in [35] and Autograph in
[23] detect and block worm spreading through identifying the
common characteristics, such as a common bit-string, among
all infection network traffic of a worm. Wu et al. [43] proposed
a victim counter-based detection algorithm that tracks the in-
creased rate of new infected hosts.

Our early detection system tries to detect the presence of a
worm in the global Internet. For worm detection in local net-
works, Staniford-Chen et al. [38] presented GrIDS, which can
detect worm-infected hosts in a local network through building
the worm’s infection graph (based on monitored infection traffic
between all hosts); Dagon et al. [11] presented a “honeystat”
worm detection method by correlating infection statistics pro-
vided by local honeypots when a worm tries to infect them.
The CounterMalice quarantine device [36] also tries to detect
infected hosts in local enterprise networks.

We assume that the IP infrastructure is the current IPv4. If
IPv6 replaces IPv4, the vast IP space of the IPv6 would make it
futile for a worm to propagate through blindly IP scanning [50].
However, we believe IPv6 will not replace IPv4 in the near fu-
ture, and worms will continue to use various random scan tech-
niques to spread in the Internet.

III. WORM PROPAGATION MODEL

A promising approach for modeling and evaluating the be-
havior of malware is the use of fluid models. Fluid models are
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Fig. 1. Worm propagation model.

appropriate for a system that consists of a large number of vul-
nerable hosts, which is the case for Internet-scale worm propa-
gation modeling. In epidemiology research, the simple epidemic
model [12] assumes that each host resides in one of two states:
susceptible or infected. The model further assumes that once
infected by a virus or a worm, a host remains in the infectious
state forever. Thus, any host has only one possible state transi-
tion: susceptible infected. The simple epidemic model for a
finite population is

(1)

where is the number of infected hosts at time , is the size of
the vulnerable population before any of them is infected, and
is called the pairwise rate of infection in epidemic studies [12].
At , hosts are initially infected while the remaining

hosts are susceptible.
This model captures the basic mechanism of the propaga-

tion of a random-scan worm, especially for the initial stage
of a worm’s propagation when the effect of human counter-
actions and network congestion is ignorable [46]. A sequen-
tial-scan worm (such as Blaster), or a subnet-scan worm (such as
Code Red II), propagates differently from a uniform-scan worm.
However, through simulation and analysis, [48] showed that the
propagation of these worms still closely follows the epidemic
model (1).

The epidemic model (1) has its limitations. First, the model
assumes that all hosts can directly contact each other, which
means it is not suitable for a topological worm (such as Morris
[33]) or a mass-mailing e-mail virus [49]. Second, if worm-
infected hosts collaborate their infection efforts, such as the
divide-and-conquer approach or the permutation scan used by
the Warhol worm [37], then the worm’s propagation will de-
viate from the epidemic model.

For the epidemic model (1), Fig. 1 shows the dynamics of
as time goes on for one set of parameters. We can roughly

partition a worm’s propagation into three phases: the slow start
phase, the fast spread phase, and the slow finish phase. During
the slow start phase, since , the number of infected hosts

TABLE I
NOTATIONS IN THIS PAPER

increases exponentially (model (1) becomes ).
After many hosts are infected and then participate in infecting
others, the worm enters the fast spread phase where vulnerable
hosts are infected at a fast, near linear speed. When most vul-
nerable computers have been infected, the worm enters the slow
finish phase because the few leftover vulnerable computers are
difficult for the worm to search out. Our task is to detect the pres-
ence of a worm in the Internet in its slow start phase as early as
possible.

At the early stage of a worm’s propagation, .
Since we want to detect a worm at its slow start phase, we can
accurately model a worm’s propagation at this stage by using
the exponential growth model:

(2)

which has the solution

(3)

In this paper, we use the discrete-time model for worm modeling
and early detection. Time is divided into intervals of length ,
where is the discrete time unit. To simplify the notations, we
use “ ” as the discrete time index from now on. For example,

means the number of infected hosts at the real time . The
discrete-time version of the simple epidemic model (1) can be
written as [12]

(4)

where

(5)

We call the infection rate because it is the average number
of vulnerable hosts that can be infected per unit of time by one
infected host during the early stage of a worm’s propagation.
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For the exponential worm model (2), we derive an autoregres-
sive (AR) discrete-time model similar to (4):

(6)

which is called AR exponential model in this paper. We can also
derive another discrete-time model by taking the logarithm on
both sides of the solution (3):

(7)

which is called transformed linear model in this paper.
It should be mentioned that it is hard to choose an appropriate
before we know a worm’s propagation speed. We will further

discuss this issue in Sections VII and VIII.
Before we go on to discuss how to use the worm models to

detect and predict worm propagation, we first present the mon-
itoring system design in Section IV, and discuss data collection
issues in Section V.

IV. MONITORING SYSTEM

In this section, we propose the architecture of a worm mon-
itoring system. The monitoring system aims to provide com-
prehensive observation data on a worm’s activities for the early
detection of the worm. The monitoring system consists of a
Malware Warning Center (MWC) and distributed monitors as
shown in Fig. 2.

A. Monitoring System Architecture

There are two kinds of monitors: ingress scan monitors and
egress scan monitors. Ingress scan monitors are located on
gateways or border routers of local networks. They can be
the ingress filters on border routers of the local networks, or
separated passive network monitors. The goal of an ingress scan
monitor is to monitor scan traffic coming into a local network
by logging incoming traffic to unused local IP addresses. For
management reasons, local network administrators know how
addresses inside their networks are allocated; it is relatively
easy for them to set up the ingress scan monitor on routers
in their local networks. For example, during the Code Red
incident on July 19, 2002, a “/8” network at UCSD and two
“/16” networks at Lawrence Berkeley Laboratory were used to
collect Code Red scan traffic. All port 80 TCP SYN packets
coming in to nonexistent IP addresses in these networks were
considered to be Code Red scans [27].

An egress scan monitor is located at the egress point of a local
network. It can be set up as a part of the egress filter on the
routers of a local network. The goal of an egress scan monitor is
to monitor the outgoing traffic from a network to infer the scan
behavior of a potential worm.

Ingress scan monitors listen to the global traffic in the In-
ternet; they are sensors for global worm incidents (called “net-
work telescope” in [29]). However, it is difficult to determine the
behavior of each individual infected host from the data collected
by ingress scan monitors because such monitors can only cap-
ture a small fraction of scans sent out by an infected host. On the
other hand, if a computer inside a local network is infected, the
egress scan monitor on this network’s routers can observe most
of the scans sent out by the compromised computer. Therefore,
an egress scan monitor is good at observing a worm’s scan rate

Fig. 2. Generic worm monitoring system.

and scan distribution, e.g., uniform scan (such as Code Red), or
subnet scan (such as Code Red II and Sasser), or sequential scan
(such as Blaster).

In order to provide early warning in real time, distributed
monitors are required to send observation data to the MWC con-
tinuously without significant delay, even when a worm’s scan
traffic has caused congestion to the Internet. For this reason, a
tree-like hierarchy of data mixers can be set up between mon-
itors and MWC: MWC is the root; the leaves of the tree are
monitors. The monitors nearby a data mixer send observed data
to the data mixer. After fusing the data together, the data mixer
passes the data to a higher level data mixer or directly to MWC.
An example of data fusion is the removal of repetitive IP ad-
dresses from the list of infected hosts. However, the tree struc-
ture of data mixers creates single points of failure, thus there is
a tradeoff in designing this hierarchical structure.

B. Location for Distributed Monitors

Ingress scan monitors on a local network may need to be put
on several routers instead of only on the border router because
the border router may not know the usage of all IP addresses of
this local network. In addition, since worms might choose dif-
ferent destination addresses by using different preferences, such
as subnet scanning, we need to use distributed address spaces
with different sizes and characteristics to ensure proper cov-
erage. Later on, we show that for monitoring nonuniform scan
worms such as Blaster, the IP space covered by a monitoring
system should be as distributed as possible.

For egress scan monitors, worms on different infected
computers may exhibit different scan behaviors. For example,
Slammer’s scan rate is constrained by an infected computer’s
bandwidth [26]. Therefore, we need to set up distributed egress
filters to record the scan behaviors of many infected hosts at
different locations and in different network environments. In
this way, the monitoring system could obtain a comprehensive
view of the behaviors of a worm. For example, it can get a
better observation of the average number of scans an infected
host sends out per unit of time.

V. DATA COLLECTION AND BIAS CORRECTION

After setting up a monitoring system, we need to determine
what kind of data should be collected. The main task for an



ZOU et al.: MONITORING AND EARLY DETECTION OF INTERNET WORMS 965

egress scan monitor is to determine the behaviors of a worm,
such as the worm’s average scan rate and scan distribution. De-
note as the “average worm scan rate,” which is the average
number of scans sent out by an infected host in a unit time. Thus,
in a monitoring interval , an infected host sends out on average

scans. The ingress scan monitors record two types of data:
the number of scans they receive, and the source IP addresses
of computers that send scans to them.

If all monitors send observation data to MWC once in every
monitoring interval, then MWC obtains the following observa-
tion data at each discrete time epoch :

1) the number of scans monitored in a monitoring interval
from discrete time to , denoted by ;

2) the cumulative number of infected hosts observed by the
discrete time , denoted by ;

3) a worm’s scan distribution;
4) a worm’s average scan rate .

Let us first focus on worms that uniformly scan the Internet.
Let denote the probability that a worm’s scan is monitored
by a monitoring system. If ingress scan monitors cover IP
addresses, then a worm’s scan has the probability to
hit the monitoring system. We assume that in the discrete-time
model all changes happen right before the discrete time epoch
, then we have

(8)

In order to detect nonuniform scan worms, it is important to ob-
serve a worm’s scan distribution since it affects how we should
use monitored data in our early detection. For example, if a
subnet-scan worm has a higher preference in scanning local
“/16” IP space, we can remove these “/16” local scans from
monitored data in order to observe the worm’s global scan
trend. For a sequential scan worm, as explained later in Sec-
tion IV, we can first apply a low-pass filter on monitored data

to remove its excessive high-frequency noise before using
the Kalman filter for early detection.

An egress scan monitor can observe the scan rates of all its
internal infected hosts. If egress scan monitors cover many in-
fected hosts, and if the scan rate of the worm does not vary
too much, then we can obtain an accurate estimation of , the
worm’s average scan rate. However, it is hard for the monitoring
system to obtain an accurate estimate of for a bandwidth-lim-
ited worm, such as Slammer or Witty, since the worm’s scan
rate could vary over several orders of magnitude [26], [34]. In
this paper, is used both in the following “bias correction” and
in estimating the vulnerable population size in Section VI. We
should keep in mind that both procedures will have more errors
when we deal with a bandwidth-limited worm.

A. Correction of Biased Observation

For a uniform-scan worm, each worm scan has a small prob-
ability of being observed by a monitoring system, thus an in-
fected host will send out many scans before one of them is ob-
served by ingress scan monitors. This process can be modeled as
a Bernoulli trial with a small success probability . Therefore,
the number of infected hosts monitored by the discrete time ,

, is not proportional to . This bias has been mentioned in
[10] and [29], but neither of them have presented methods to

correct the bias. In the following, we present an effective way
to obtain an accurate estimate for the number of infected hosts

based on and . Although such a bias correction is not es-
sential to a worm’s early detection since we can use monitored
data , it is important for us to know how many computers in
the global Internet are really infected.

In the real world, different infected hosts of a worm have
different scan rates. To derive the bias correction formula, let
us first assume that all infected hosts have the same scan rate

(we will show the effect of removing this assumption in the
following simulation). In a monitoring interval , a worm sends
out on average scans, thus the monitoring system has the
probability to observe at least one scan from an
infected host in a monitoring interval.

At the discrete time , the monitoring system has
observed infected hosts among the overall infected
ones . During the next monitoring interval from discrete
time to , every host of the as-yet unobserved ones,

, has the probability to be observed.
Suppose in the discrete-time model, all changes happen right
before the discrete time epoch , then the average number of
infected hosts monitored by discrete time conditioned on

is

(9)

Removing the conditioning on yields

(10)

From (10), we can derive the formula for as

(11)

Since is unknown in one incident of a worm’s propa-
gation, we replace by and derive the estimate of as

(12)

Now we analyze how the statistical observation error of
affects the estimated value of . Without considering nonworm
noise, suppose the observation data is

(13)

where the statistical observation error is a white noise with
variance . Substituting (13) into (12) and replacing by

from (11) yields

(14)

where the error is

(15)

Since , the estimated value is unbiased (under
the assumption that all infected hosts have the same scan rate

). The variance of the error of is

(16)

The equation above shows that is always larger than
, which means the statistical error of observation is ampli-

fied by the bias correction formula (12). If ingress scan monitors
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Fig. 3. Estimate Î based on the biased observation data C (monitoring 2

IP space).

cover less IP space, would decrease, then (16) shows that the
estimate would become noisier.

We simulate Code Red propagation to check the accuracy
of the bias correction formula (12). In the simulation,

; the monitoring interval is one minute; the average
worm scan rate is per minute. The monitoring system
covers IP addresses (equal to two Class B networks). Be-
cause different infected hosts have different scan rates, we as-
sume each infected host has a scan rate that is predetermined
by the normal distribution , where in the sim-
ulation ( is bounded by . We will explain how we choose
these parameters in Section VII). The simulation result is shown
in Fig. 3.

Fig. 3 shows that the observed number of infected hosts, ,
deviates substantially from the real value . After the bias cor-
rection by using (12), the estimate matches well in the sim-
ulation before the worm enters the slow finish phase ( deviates
from in the slow finish phase). In deriving the bias correc-
tion formula (12), we have assumed that all hosts have the same
scan rate , which is not the case in this simulation. In this sim-
ulation, some hosts have very small scan rates; these hosts will
take much longer time to hit the monitoring system than others.
Thus, in the slow finish phase, many unobserved infected hosts
are the ones with very low scan rates. Therefore, during the slow
finish phase, the bias correction formula has an error due to the
decreasing of the average scan rate for those unobserved in-
fected hosts. In fact, we have run many other simulations by
letting all hosts to have the same scan rate (i.e., let ).
In these cases, the after bias correction always matches well
with without bias.

The bias correction error the appears in a worm’s slow finish
phase will become larger as the worm-infected hosts have more
variable scan rates, especially for bandwidth-limited worms
such as Slammer [26] and Witty [34].

Fig. 4 shows the simulation results if the monitoring system
only covers IP addresses. The estimate after the bias cor-
rection is still accurate, but noisier because of the error amplifi-
cation effect described by (16).

Fig. 4. Estimate Î based on the biased observation data C (monitoring 2

IP space).

It should be emphasized that the bias correction (12) is de-
rived based on uniform scanning, thus it is accurate for a uni-
form-scan worm, such as Code Red. For other worms, such as
a subnet-scan worm (e.g., Code Red II), or an imperfect uni-
form-scan worm (e.g., Slammer), the bias correction (12) could
possibly produce certain error in its estimation.

The bias correction (12) assumes that we treat a host as in-
fected upon receiving its first illegal scan to our empty IP space.
If the nonworm background noise in monitored data is small
compared with worm scan traffic, the bias correction formula
can still provide a good estimate . If we want to remove the
background noise in the monitored data before using the bias
correction formula, we have to wait for some time before esti-
mating since we may be able to detect an infected host accu-
rately only after we have received several illegal scans from it
[18], [41]. When we detect an infected host, we check our mon-
itored data to find out when it sends the first illegal scan to us,
e.g., within the last hour; then, we use the bias correction (12)
to estimate the global infected hosts in the Internet an hour ago.

VI. EARLY DETECTION AND ESTIMATION

OF WORM VIRULENCE

In this section we present estimation methods based on recur-
sive filtering algorithms (e.g., Kalman filters [4]) for stochastic
dynamic systems. At MWC, we recursively estimate the param-
eter based on observation data at each monitoring interval in
order to detect a worm at its early propagation stage.

Let be the measurement data used by a Kalman
filter estimation algorithm. Suppose the observations have one
monitoring interval delay

(17)

where is the observation error. is a constant ratio: if we use
as , then as shown in (8); if we use derived

from by the bias correction (12), then .

A. Early Detection Based on Kalman Filter Estimation

In Section III, we presented three discrete-time worm models:
the epidemic model (4), the AR exponential model (6), and the
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transformed linear model (7). In this section, we present three
Kalman filter estimation algorithms, one for each discrete-time
model.

From (17), we have

(18)

First, we use the simple epidemic model (4). Substituting (18)
into the worm model (4) yields an equation describing the rela-
tionship between and :

(19)

where the noise is

(20)

A recursive least square algorithm for and can be cast
into a standard Kalman filter format [4], [25]. Let and
denote the estimated value of and at the discrete time ,

respectively. Define the system state as . If we

denote , then the system is described by

(21)

The Kalman filter in estimating is

(22)

where is the weight of the th error term in the Least Square
(LS) estimation algorithm [25]. We can use it to adjust whether
our estimation should rely more on recently monitored data (
increases as increases) or equally on all monitored data ( is
a constant).

in (20) is a correlated noise. The Kalman filter (22) can be
extended to consider such correlated noise to derive unbiased
estimates of and in theory (such as an extended Kalman
filter [4]). However, an unbiased Kalman filter introduces addi-
tional parameters to estimate, thus the new filter will converge
slower than the proposed filter (22). In fact, we have designed an
extended Kalman filter and our experiments confirm this conjec-
ture. In this paper, the primary objective is to derive a rough es-
timate of as quickly as possible for early detection of a worm.
Therefore, it is better to use the simple Kalman filter (22) here.

If we use as the measurement data in the Kalman filter
but do not know (e.g., when we do not have data from egress
scan monitors), we can still estimate the infection rate by let-
ting . The Kalman filter (22) does not depend on in esti-
mating ; the value of only affects the estimated value of .

Now we consider the AR exponential model (6). Substituting
(18) into model (6) yields

(23)

where the noise is

(24)

Equation (23) has the similar format as (19). Thus, if we
change and in the original Kalman filter (22) to

and , we derive a new Kalman filter that
is based on the AR exponential model (6).

For the transformed linear model (7), we can derive the for-
mula of as

(25)

It is difficult or impossible for us to know when a worm starts
spreading, i.e., we do not know the absolute value . We only
know a relative time where is the discrete time
when we activate our Kalman filter detection system; the true
value of is not known. It means that in the worm model we
can only use variable but not .

If we let , from (25) we can derive
the relationship between and a worm’s infection rate as

(26)

where

(27)

and the noise is

(28)

When we activate the Kalman filter in our early detection
system, and always hold. From (28) we
know that and because the
logarithm function always increases slower than the
function when increases in the domain . In
addition, from (28) we also know that

(29)

Therefore, the noise in (26) decreases its magnitude when
increases as time goes on.

When we use the transformed linear model (7) for early de-
tection, the system state vector for the Kalman filter is

. Now and the system is described by

(30)

The Kalman filter in estimating is

(31)

B. Estimation of Vulnerable Population Size

For a uniform-scan worm, we present below an effective way
to predict the population size based on the observation data

and the estimate from Kalman filters above. In this way, we
can know how many computers are vulnerable in the Internet
when a worm is still in its slow start phase. A uniform-scan
worm sends out on average scans per unit time; each scan
has the probability to hit a host in the population under
consideration. Hence, at the beginning when most hosts in the
vulnerable population are still vulnerable, a worm can infect
on average hosts per unit time. (The probability of two
scans sent out by a single infected host hitting the same target
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is negligible). From the definition of infection rate , we have
. Therefore, the population is

(32)

where the average worm scan rate is directly estimated from
monitored data generated by egress scan monitors. When we use
one of the Kalman filters above to estimate , we can use (32)
to estimate along with the Kalman filter estimation. In this
way, the estimation of has similar convergence properties to
the estimation of from the Kalman filter.

C. Overview of the Steps to Detect a Worm

MWC collects and aggregates reports of worm scans from
all distributed monitors once in every monitoring interval in
real-time. For each TCP or UDP port, MWC has an alarm
threshold for monitored illegitimate scan traffic . The ob-
served number of scans , which contains nonworm noise, is
below this threshold when there is no global spreading worm.
This threshold can be chosen based on observations on normal
days when no wide-spreading worm exists in the Internet.
If the monitored scan traffic is over the alarm threshold for
several consecutive monitoring intervals, e.g., is over the
threshold for three consecutive times, the Kalman filter will
be activated. Then MWC begins to record and calculates
the average worm scan rate from the reports of egress scan
monitors. Because is a cumulative observation data that
could cumulate all nonworm noise, MWC begins to record data

only after the Kalman filter is activated. The Kalman filter
can either use or to estimate all the parameters of a worm
at discrete time .

The recursive estimation will continue until the estimated
value of shows a trend: if the estimate stabilizes and oscil-
lates slightly around a positive constant value, we have detected
the presence of a worm; if the estimate converges to or oscil-
lates around zero, we believe the surge of illegitimate monitored
traffic is caused by nonworm noise.

VII. SIMULATION EXPERIMENTS

In this section, we describe the extensive simulations we used
to study: 1) how a random-scan worm and a sequential-scan
worm propagate, and 2) the performance of our Kalman filter-
based early detection system. In addition, we show that the ad-
dress space covered by the worm monitoring system should be
as distributed as possible in order to better monitor nonuniform
scan worms, especially a sequential-scan worm such as Blaster.

In our simulation experiments, we do not simply use the epi-
demic model (1) to numerically generate a worm’s propagation
curve. Instead, we have programmed discrete-time worm prop-
agation simulators, which can be downloaded from [44], to sim-
ulate the detailed scanning behaviors of scans sent out by each
infected host during each discrete time interval. In this way, we
can accurately simulate the detailed propagation of a worm that
uses any kind of scanning strategy.

A. Simulation Settings

We have simulated Code Red [2], SQL Slammer [26], and a
sequential-scan worm similar to Blaster [3]. First, we explain

how we choose the simulation parameters. In the case of Code
Red, more than 359 000 Code Red infected hosts were observed
on July 19, 2001 by CAIDA [27]. Thus, in our simulation we set
the Code Red vulnerable population . Staniford
et al. [37] used a different format but the same epidemic model
as (1) to model Code Red, where their model’s parameter is
actually [46]. They determined that
for the time scale of one hour. Therefore, for the discrete time
unit of one minute in our simulation, . From
(32) we can reversely derive per minute,
i.e., Code Red sends out on average about 358 scans per minute
per infected host.

Because different infected hosts have different scan rates, we
assume that each infected host has a constant scan rate , a rate
that is independently predetermined by a normal distribution

, where (the scan rate is bounded by ).
In our simulation, ingress scan monitors cover IP space. We
also assume at the beginning.

Because of the sequential scan used by Blaster, people do
not have a good estimation of how many computers were re-
ally infected by Blaster within the days following the worm’s
outbreak. We will explain the reason for this later in our exper-
iments (shown in Fig. 10). In addition, there is no authoritative
study of this worm’s scan rate . Therefore, in this paper we
simulate and study a sequential-scan worm that has the same
“local preference” as Blaster [3], which is called a “Blaster-like”
worm in this paper. Since we want to understand how the se-
quential scan affects a worm’s propagation and our early detec-
tion system, we give this Blaster-like worm the same parame-
ters as Code Red in order to compare it with Code Red, i.e.,
we set the Blaster-like worm to have
per minute. Each worm’s scan rate follows normal distribu-
tion with the bound , and at the
beginning.

For a uniform-scan worm, such as Code Red, the distribution
of vulnerable hosts in the Internet will not affect the worm’s
propagation. However, this distribution may affect the propaga-
tion of Blaster [48] because of its sequential scan. Since we do
not know the true distribution of vulnerable hosts in the Internet,
in our simulations of the Blaster-like worm, we assume vulner-
able hosts are uniformly distributed in the IP space defined by
BGP routing prefixes, which is less than 30% of the entire IPv4
space [50].

We should choose an appropriate monitoring interval in the
Kalman filter estimation. should not be too big in order to ob-
tain enough sampling points in a worm’s slow start phase for the
Kalman filter. On the other hand, a too small monitoring interval
puts more pressure on the MWC data collection, and introduces
more monitoring statistical error in (17) (because we can ob-
serve fewer worm scans in a smaller monitoring interval). In the
discrete-time simulations in this paper, the monitoring interval

is set to be one minute for Code Red and the Blaster-like
worm. SQL Slammer propagates much faster and can finish in-
fection in about 10 minutes [26]. Hence its monitoring interval
should be much shorter in order to catch the dynamics of this
worm. For this reason, the monitoring interval for Slammer is
set to be one or several seconds (we will further discuss se-
lection in Section VIII ).
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B. Background Noise Consideration

We need to consider background nonworm noise in our simu-
lations. Fortunately, Goldsmith [14] provided simple data of the
background noise for Code Red activities monitored on a “/16”
network (covers IP addresses). He recorded TCP port 80
SYN requests from Internet hosts to any unused IP addresses
inside his local network. Such data are exactly the monitored
data collected by ingress scan monitors in our proposed moni-
toring system. His monitored data showed that the background
noise was small compared to Code Red traffic and the noise did
not vary much. If we use normal distribution to model the back-
ground noise, then for each hour the number of noise scans fol-
lows and the number of source hosts that send
noise follows .

We try to hold the statistics of the observed background noise
in our experiments: we monitor IP space, which is 16 times
larger than what Goldsmith monitored, so the number of noise
scans or noise sources should be enlarged by 16 times. We use
one minute instead of one hour as the monitoring interval, thus
we should decrease the number of noise scans or noise sources
by 60. In this way, in our simulations of Code Red and the
Blaster-like worm, the noise added into the observation data
at each monitoring interval follows for and

for . Of course, this kind of extension of
noise is very rough, but it is the best we can do based on the
data available. Currently, we are trying to obtain detailed log
data on previous worms from other researchers in order to have
more realistic experiments.

In the simulation experiments, the alarm threshold for is
set to be two times as large as the mean value of the background
noise, i.e., the alarm threshold is . The Kalman
filter we use in early detection will be activated when the moni-
tored scan traffic is over the alarm threshold for three consec-
utive monitoring intervals. In this way, the Kalman filter will not
be frequently activated by the surge of background noise traffic
in the normal days.

C. Code Red Simulation and Early Detection

We simulate Code Red propagation for 100 simulation runs
with the same input parameters but different seeds for random
number generator. Fig. 5 shows the number of infected hosts as
a function of time for three cases: the average value, the 95th
percentile, and the 5th percentile. The curve of 95th percentile
means that in 95 out of our 100 simulation runs, Code Red prop-
agates no faster than this curve represents.

This figure shows that a worm propagates slightly differently
in different sample runs. The propagation speed difference is
mainly caused by a worm’s spreading at the beginning, when
only several infected hosts scan and attempt to infect others. In
fact, we have chosen and run Code Red propagation
for another 100 simulation runs. It shows that Code Red in the

case propagates more variously than the one shown in
Fig. 5, where .

For one simulation run of Code Red propagation, Fig. 6 shows
the estimation of the worm infection rate as a function of
time by using three Kalman filters based on three discrete-time
models: epidemic model (4), AR exponential model (6), and

Fig. 5. Code Red propagation and its variability (100 simulation runs).

transformed linear model (7), respectively. This figure shows
the estimates by using the processed monitored data after
subtracting the average value of background noise from it. We
can obtain the average value of noise based on the observations
before activating the Kalman filter. We can use either the moni-
tored data or the data after bias correction (12) to estimate

for Code Red. They provide the similar estimation results
[45]. Later, when we study the early detection of the Blaster-like
worm, because of its nonuniform scan, we cannot use the bias
correction (12) for the monitored data and have to rely on
the monitored data in our early detection. Therefore, in this
paper we will only discuss early detection by using the moni-
tored data .

In this simulation run, at time 126, 127, and 128 minutes
are over the alarm threshold 59, thus the Kalman filter is acti-
vated at time 128 minutes. Fig. 6 shows that the Kalman filter es-
timation based on the transformed linear model provides a much
better estimation result than the other two because the noise
introduced by the transformed linear model (7) is much smaller
than the noise and introduced by the other two models.

The noise and introduced by these three models are
shown in (20), (24), and (28), respectively. We can see that the
magnitude of the noise (28) introduced by the transformed
linear model decreases as time goes on as shown in (29). On the
other hand, the magnitude of the noise (24) introduced by the
AR exponential model does not change; the magnitude of the
noise (20) introduced by the epidemic model could possibly
increase as time goes on (because in (20) increases as time
goes on).

Because of the decreasing noise in the transformed linear
model, we select in the Kalman filter (31) of the trans-
formed linear model in order to put more weight on the newest
less noisy observation data. On the other hand, we select
for both the Kalman filters of the epidemic model and the AR
exponential model since their noises, , do not decrease.

In the Code Red simulation run shown in Fig. 6, the worm
infects 0.3% of vulnerable computers in the Internet at time
157 minutes. If we use the transformed linear model in
our early detection, Fig. 6(c) shows that the estimate has
already stabilized at a positive constant value by that time.
Therefore, we can detect the presence of Code Red when it
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Fig. 6. Kalman filter estimation of Code Red infection rate � (for one
simulation run). (a) Based on epidemic model (4). (b) Based on AR exponential
model (6). (c) Based on transformed linear model (7).

has only infected 0.3% of all vulnerable population in the
Internet. For the remaining 99 Code Red simulation runs, we
have done such early detection by using Kalman filters and
have achieved the similar early detection performance. In our
previous paper [45], we have shown that the early detection
system can achieve a similar detection performance—detect
a worm when it infects a similar fraction of the vulnerable
population—no matter whether this worm propagates faster
or slower in those 100 simulation runs.

Fig. 7. Long-term Kalman filter estimation.

Fig. 8. Estimate of the vulnerable population size N of Code Red.

The Kalman filter (22) (based on epidemic model) is still
useful since it is able to estimate worm infection rate during
the whole propagation period of a worm. On the other hand,
because the transformed linear model is derived from the ex-
ponential-growth model (7), its Kalman filter will underesti-
mate when the worm enters its “fast spread phase” (as shown
in Fig. 1). Fig. 7 shows the estimation results from these two
Kalman filters before the worm infects 80% of vulnerable hosts
at time 400 minutes. It shows that we should use these two
Kalman filters together in the early detection of a worm.

We predict the vulnerable population size from (32) at each
discrete time when we update the estimate of from Kalman fil-
ters. Fig. 8, shows the estimated value of as a function of time
based on the Kalman filters of transformed linear model (31)
and epidemic model (32), respectively. Because the estimate
is proportional to the estimate , this figure has the same pat-
tern as Fig. 7. In a real implementation, we should combine both
estimation curves shown in Fig. 8 to predict the vulnerable pop-
ulation size .

Because Slammer propagates in the same way as Code
Red—by uniformly scanning the Internet—its propagation
and its early detection are very similar to the methods used
for detecting Code Red [45]. (We choose /sec as
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Fig. 9. Worm propagation comparison between Code Red and Blaster-like
worm (100 simulation runs for each worm).

explained in [26] and second). Therefore, we do not
repeatedly show the early detection of Slammer in this paper.

D. Blaster-Like Worm Simulation and Early Detection

Each Blaster infected host scans the entire IP space sequen-
tially from a selected starting point. To select this starting IP ad-
dress, each worm copy has a 40% probability to choose the first
address of its Class C-size subnet (x.x.x.0), and a 60% prob-
ability to choose a completely random IP address [3]. In our
simulations, we let the Blaster-like worm to have the same local
preference in selecting its starting point.

Since we select the same parameters for simulations of both
Code Red and the Blaster-like worm, we can compare them to
study how the sequential scan affects a worm’s propagation.
Again, we run the simulation of the Blaster-like worm for 100
simulation runs. Fig. 9 shows the 95th percentile and 5th per-
centile of the worm’s propagation compared with the previous
Code Red simulations shown in Fig. 5.

Even though the simple epidemic model (1) is derived based
on uniform scanning, our simulation experiments show that the
Blaster-like worm can still be accurately modeled by the simple
epidemic model (1), and thus the worm can be modeled by
the three discrete-time models presented in this paper. This is
consistent with a conclusion in [48], which shows that a se-
quential-scan worm has the same propagation dynamics as a
uniform-scan worm when the vulnerable hosts are uniformly
distributed.

However, we should keep in mind that a worm’s propagation
is in fact a stochastic process; the epidemic model (1) is accurate
only when both the number of vulnerable hosts and the number
of infected hosts are relatively large. For example, no ordinary
differential equation models are suitable to model the very end
of a worm’s propagation when the worm finishes infecting the
last several vulnerable hosts, which can only be modeled ac-
curately by a stochastic model. Since we study an Internet-scale
worm’s propagation that involves hundreds of thousands or even
millions of computers, the epidemic model (1) is a good abstract
model for modeling a worm’s dynamics except the very begin-
ning and the very end of the worm’s propagation.

Fig. 10 shows that the Blaster-like worm propagates slower
than Code Red. Zou et al. [48] pointed out that this is because

Fig. 10. Blaster-like worm propagation and its monitored data. (a) Worm
propagation and observed infected hosts (Y-axis is in logarithm). (b) Monitored
data Z . (c) Monitored data Z after using a low-pass filter.

the Blaster-like worm selects its starting scanning point with a
local preference, not because of its sequential scan mechanism.

Because of its sequential scan, when monitoring the Blaster-
like worm, we cannot let the monitoring system cover only one
big block of IP address space—such a monitoring system can
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only observe a very small fraction of infected hosts in the In-
ternet. For example, if a sequential scan worm has the same fast
scan rate per second as Slammer [26], each infected
host will take days to finish scanning the entire
IPv4 space. Therefore, most hosts infected by the Blaster-like
worm will take days before their scans hit the big block IP ad-
dress space monitored in such a monitoring system.

For this reason, a good worm monitoring system should cover
as distributed as possible an IP address space in the Internet.
In this paper, we simulate two monitoring systems. Both mon-
itoring systems cover the same IP addresses (the same as
the monitoring system in previous Code Red study), but they
consist of a different number of monitored IP blocks: one moni-
tors 16 “/16” networks; the other monitors 1024 “/22” networks.
All monitored address blocks in a monitoring system are evenly
distributed in the entire IPv4 space. We call these two moni-
toring systems as “the 16-block monitoring system” and “the
1024-block monitoring system”, respectively.

Fig. 10 shows one simulation run of the Blaster-like worm.
Fig. 10(a) shows the number of infected hosts in the entire
Internet as a function of time . It also shows the cumulative
number of observed infected hosts, , from both monitoring
systems. Because observed is very small compared with

, we plot this figure by taking logarithmically on the Y-axis.
Fig. 10(a) shows that, during the worm’s propagation period,

we can observe less than 0.1% of infected hosts in the Internet
from the 16-block monitoring system. Even if we use the 1024-
block monitoring system, we can only observe less than 4%
of infected hosts in the Internet during the worm’s propagation
period. This is the reason why researchers have not derived an
accurate estimate of how many computers were really infected
by the Blaster-like worm.

Fig. 10(b) shows the monitored data , the number
of worm scans observed within each minute. Compared to
the 16-block monitoring system, The 1024-block monitoring
system gives noisier observation . This is because as time
goes on, an infected host will enter or leave one of the moni-
tored IP blocks. It happens more frequently in the 1024-block
monitoring system than in the 16-block monitoring system.

Although noisier than the data from the 16-block monitoring
system, the monitored data from the 1024-block monitoring
system represents more accurately the propagation of a sequen-
tial-scan worm. From the monitored data sets, we want to know
the worm’s propagation pattern in the global Internet, i.e., the
curve of shown in Fig. 10(b). Such a growth pattern of
is a low frequency signal compared with the high frequency
noise presented in the observed data . Therefore, we can use a
low-pass filter to filter out high frequency noise from without
changing the worm’s propagation pattern. Fig. 10(c) shows the
observation data after being filtered by a first-order low-pass
filter.1 This figure clearly shows that the monitored data from the
1024-block monitoring system can better represent the worm’s
propagation pattern in the entire Internet.

Based on the filtered monitored data from the 1024-block
monitoring system as shown in Fig. 10(c), we run the Kalman

1Denote by Ẑ as the Z after filtering. The low-pass filter is Ẑ = aZ +
(1� a)Ẑ . We use a = 0:1 in Fig. 10(c).

Fig. 11. Kalman filter estimation of worm infection rate � for the Blaster-like
worm (based on the transformed linear model and filtered data Z from a
1024-block monitoring system).

filter estimation based on the transformed linear model. The es-
timated is shown in Fig. 11 as a function of time. In this sim-
ulation run, the Blaster-like worm infects 1.3% of vulnerable
population at time 240 minutes, by which time the estimate
has already stabilized and oscillated slightly around a positive,
constant value. Hence our early detection system can detect the
Blaster-like worm before it infects 1.3% of vulnerable popula-
tion in the Internet.

Worm propagation in other simulation runs of the Blaster-like
worm gives results similar to those shown in Figs. 10 and 11,
On occasion the 16-block monitoring system provides as good
observation as the 1024-block monitoring system. However, the
1024-block monitoring system always provides stable and good
observations, while the 16-block monitoring system provides
poor observations in many instances.

VIII. DISCUSSION AND FUTURE WORK

We have used the simple epidemic model (1) and the expo-
nential model (2) for the estimation and prediction. While these
models give good results so far, we need to develop more de-
tailed models to reflect a future worm’s dynamics. For example,
if a worm spreads through a topology, or spreads by exploiting
multiple vulnerabilities, or is a meta-server worm, then its prop-
agation may not follow the models used in this paper.

The monitoring interval is an important parameter in the
system design. For a slow-spreading worm, it could be set to be
long, but for a fast-spreading worm such as Slammer, the time
interval should be in the order of seconds to catch up with the
worm’s dynamics. How can we select the appropriated be-
fore we know a worm’s presence and its speed? We need to do
further research on designing a recursive estimation algorithm
that uses adaptive sampling rate. Currently, one way we con-
template is to tag the time stamp with each observed scan. Then
at MWC, several estimators run in parallel with different mon-
itoring intervals. From the tagged time stamp the correct or

for every estimator can easily be restored.
It could be useful to develop distributed estimation algo-

rithms so as to reduce the latency and traffic for the report to
a central server. Distributed estimators may also reduce the
impact of noise when a few monitors experience larger than
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normal noise-to-signal ratios. In addition, we want to use a
continuous version of the Kalman filter. This approach would
reduce the significance of the monitoring interval selection, and
would work nicely with the distributed estimation setting.

The worm detection method presented here assumes that only
worm scans can cause exponentially increased traffic to moni-
tors, while other background scan noise cannot. We believe this
is a reasonable assumption. If we want to further improve the
detection accuracy, however, we can add some other rule sets
in the detection system. For example, in order to distinguish a
worm attack from a DDoS attack, we can exploit the differences
between them: a DDoS attack has one or several targets while a
worm’s propagation has no specific target.

As mentioned in Section V, the derivation of the bias-cor-
rection (12) is based on uniform-scan worms. We need to fur-
ther study how to accurately estimate the infected population for
nonuniform scan worms, especially for a sequential-scan worm
like Blaster. In addition, the bias-correction (12) and the esti-
mation formula of vulnerable population size (32) rely on the
observation accuracy of , a worm’s average scan rate. As ex-
plained at the end of Section IV, it is hard to obtain a good esti-
mate of for a bandwidth-limited worm. Therefore, we should
be cautious when using the above two procedures on a band-
width-limited worm.

In this paper, we have presented several major issues in de-
signing an Internet Malware Warning Center. However, there
are still many challenges in building such a system, such as co-
operation mechanism among a large number of communities;
the privacy concern in monitored data sharing, and the robust-
ness of the monitoring system itself toward attacks by worms or
hackers. How to deal with these issues is out of the scope of this
paper.

IX. CONCLUSION

We have proposed a monitoring and early detection system
for Internet worms to provide an accurate triggering signal for
mitigation mechanisms in the early stage of a future worm. Such
a system is needed in view of the propagation scale and the
speed of the past worms. We have been lucky that the previous
worms have not been very malicious; the same cannot be said
for future worms. Based on the idea of “detecting the trend, not
the burst” of monitored illegitimate scan traffic, we present a
“trend detection” methodology to detect the presence of a worm
in its early propagation stage by using the Kalman filter and
worm propagation models. Our analysis and simulation studies
indicate that such a system is feasible, and the trend detection
methodology poses many interesting research issues. We hope
this paper will generate interest and participation in this topic,
and eventually lead to an effective Internet worm monitoring
and early detection system.
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