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The rapid advancement of the Internet of Things (IoT) is distinguished by heterogeneous
technologies that provide cutting-edge services across a range of application domains. However,
by eavesdropping on encrypted WiFi network traffic, attackers can infer private information
such as the types and working status of IoT devices in a business or residential home. Moreover,
since attackers do not need to join a WiFi network, such a privacy attack is very easy for
attackers to conduct while at the same time invisible and leaving no trace to the network owner.
In this paper, we extend our preliminary work originally presented at the CCNC’22 conference
by using a new set of time series monitored WiFi data frames with extended machine learning
algorithms. We instrument a testbed of 10 IoT devices and conduct a detailed evaluation
using multiple machine learning techniques for fingerprinting, achieving high accuracy up
to 95% in identifying what IoT devices exist and their working status. Compared with our
previous work in , the new approach could achieve IoT device profiling much quicker while
maintaining the same level of classification accuracy. Moreover, the experimental results
show that outside intruders can significantly harm the IoT devices without joining a WiFi net-
work and can launch the attack within a minimum time without leaving any detectable footprints.

[1] *This paper is an extended version of the paper published in Alyami, Mnassar,
Ibrahim Alharbi, Cliff Zou, Yan Solihin, and Karl Ackerman. ”WiFi-based IoT Devices
Profiling Attack based on Eavesdropping of Encrypted WiFi Traffic.” In 2022 IEEE 19th Annual
Consumer Communications & Networking Conference (CCNC), pp. 385-392. IEEE, 2022.

1 Introduction

The emerging smart infrastructures are integrated with the Internet
of Things (IoT) devices and their applications to make daily life
easier for individuals and improve the public environment [2]. To
this end, IEEE 802.11 Wireless network (WiFi) is a significant de-
velopment that helps connect a wide variety of IoT devices such
as smartphones, smart TV, home automation, intelligent vehicles,
surveillance cameras, health monitoring, and many more [3]. The
increase in applications increases the attention of attackers that find
the loopholes and gain maximum knowledge of users’ private in-
formation. The connected devices, digital systems, and sensors

that play a vital role in people’s daily life cause a significant threat
of privacy leakage of private information [4]. For example, the
Mirai malware attack, which triggered distributed denial-of-service
(DDoS), generates attacks on WiFi-connected IoT devices and ap-
plications [5]. Additionally, worms in smart bulbs gave attackers
access to all adjacent IoT lights that were compatible [6]. To this
end, the infrastructure and IoT applications must incorporate pri-
vacy protection during intelligent network design and development
phases. Figure 1 shows an overview of IoT ecosystems and relevant
scenarios.

Considering the aforementioned privacy threat, this paper fo-
cuses on the attacker’s ability to fingerprint the IoT devices in the
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WiFi network. The existing work mostly assumes the attacker is
inside the network where the attacker has to either join the network
prior to fingerprinting or wiretap the network link of the WiFi net-
work [7, 8, 9]. This assumption cannot be satisfied in the real world
by most attackers as most WiFi networks have secured password
protection, and very hard to impossible for attackers to have physical
access to their WiFi routers/access points.

Figure 1: The overview of IoT ecosystem and applications scenarios.

To this end, in this paper, we conduct a brief investigation of
whether an outside attacker can identify a network’s IoT devices
without having a joined in a WiFi network. Compared to the entities
in the network, the outsider attacker may face several difficulties,
i.e., the attack may be prevented from analyzing the plaintext of
packet payload due to the WiFi data-link layer encryption. On the
other hand, the outside attacker captures the fingerprint of the data
packet, which would be noisy (especially when more nodes are
present in the network). Moreover, the captured data cannot obtain
the IP address or the port information; thus, it is difficult to assume
whether the hypothesis is correct or not.

However, if the hypothesis is correct, there could be major
threats as follows:

• The attack is possible on all WiFi networks which are in close
proximity to the attacker. So it is easy to attack those with
weak passwords.

• The attacker only needs to drive or walk a short distance to
begin analyzing traffic, where no specific preparations are
required beforehand.

• The attack is usually untraceable because it leaves no traces.
Thus it is undetectable neither for users nor for forensic inves-
tigators.

The hypothesis needs to be investigated in detail based on the above
points.

To this end, we demonstrate that the outside attacker cannot only
fingerprint the IoT devices, but it is a straightforward process that

one can achieve depth information about the network devices. The
significant contributions of the proposed research are summarized
as follows:

• We conduct a detailed investigation and prove that finger-
printing the IoT devices from the outside of the network
eavesdropping is not only feasible, but it’s a straightforward
process.

• We consider nine real-world IoT devices and capture the out-
of-network WiFi traffic in two modes, idle and active, using
the sniffing tool capable of single-channel and multi-channel
monitoring.

• We explore the time-series data and train a machine-learning
algorithm to profile nine real-world IoT devices and present
their prediction accuracy. The experimental results prove that
the fingerprint can be possible by achieving high accuracy of
up to 95%.

The rest of the paper is organized as follows: In section 2, we
present a brief literature review that motivates us to conduct this
research work. In section 3, we first define the problem statement
and then present the threat model and assumptions of the proposed
research. Section 4 briefly explains a detailed procedure for captur-
ing WiFi traffic from outside the network. In section 5, we conduct
data processing and analysis for profiling attacks based on machine
learning. Section 6 shows the experimentation and proves that the
hypothesis above is true. Finally, in section 7, we conclude the
proposed research and define the future work.

2 Related Work
Thanks to the IEEE 802.11 protocol and the development of Wi-
Fi-enabled devices, instant access to the internet is now possible
everywhere near a public AP through a Wi-Fi connection [10]. Bil-
lions of people’s lives have been significantly impacted by this
development throughout the world. However, when a massive num-
ber of people are involved, there are higher chances of misuse or
exploitation [11]. The general public can now be followed and
profiled due to security vulnerabilities brought on by the ease of use
of the 802.11 protocol suite and the number of open public Wi-Fi
hotspots [12].

Since the early days of the internet, device identification has
been one of the primary targets for classifying network traffic [13].
Several studies have been conducted on WiFi and ethernet, proving
that various information can be extracted from IoT devices using
traffic classification, such as the device type and the device’s activi-
ties [14]. The existing literature predicts that a collection of TCP/IP
level packets would allow observation of network activity. Those
techniques are used to extract the device’s potential information. In
[15], the authors claim the possibility of a single attribute signature
for a variety of IoT devices by employing a port number. Moreover,
the deep learning technique is used to perform device fingerprinting
for flow volume features. However, this technique is not suitable for
the network which is accessed from the outside adversary because
the IP traffic is encapsulated in the upper layer that encrypts all
significant network features such as cipher suites, protocol, and port
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number. To this end, we employ a unique collection of attributes that
are straightforward to extract the features even from outside the net-
work. In [16], the authors used hardware fingerprinting and extracts
clock skew measurement. This major focus in this study is more on
the hardware rather than the device-specific classification which is
considered in the proposed research. In [7], the authors used traffic
analysis of WiFi, Bluetooth, and ZigBee to identify the status of the
devices and proposed a defensive strategy based on traffic spoofing.
In order to gain the traces of WiFi, the authors use a rogue access
point with tcpdump, which means the authors assume that all the
adversaries are either a part of the network or the adversary already
contains significant knowledge about the network. However, the
proposed technique considered that the adversary doesn’t have any
prior knowledge, and the attack is conducted from the outside of the
network. There are many other studies that have been conducted
with a focus on WiFi traffic analytics from the outside of the network
where the traffic is analyzed using off-the-shelf monitoring devices
[17]. However, to the best of our knowledge, none of the existing
studies reports the missing rate using those off-the-shelf sniffers or
the lost frames as a result of channel hopping eavesdropping [18].

On the other hand, several studies have been conducted on the
defense mechanism for those traffic analysis attacks [19, 20]. How-
ever, the primary focus of the existing literature is either on location
anonymity or website fingerprinting. Moreover, the techniques such
as padding or traffic morphing result in less accuracy of the classifier
[21]. Besides, those methods cannot rely on time-based classifi-
cation because of their limited capabilities for obfuscating traffic
patterns.

In contrast to comparable work mentioned above, the proposed
research presents an alleged privacy attack against WiFi-based de-
vices that rely on WiFi traffic monitoring from outside the network.
We proceed with a precise and practical proof-of-concept attack
on the assumption of a realistic threat scenario. We also discuss a
possible defense against those attacks.

3 Problem Statement, Threat Model, and
Assumptions

In this section, we first define the problem statement that serves as a
strong motivation for the proposed research. Afterward, we present
the threat model that needs to be covered by the proposed study.
Finally, we discuss the considered assumptions while conducting
the proposed research.

3.1 Problem Statement

The TCP/IP paradigm is used for communicating devices on net-
works. The IP address at the Network Layer and the MAC address
at the Data Link Layer can be used to identify the devices on the
network. Spoofing identities have been used to get around these
identifying mechanisms and access restricted resources. Using WiFi
traffic analysis, an attacker can ”fingerprint” devices to determine
private user behavior [22]. For instance, by continuously watching
the camera’s bitrate, the attacker could ascertain the movements of
objects inside a building [23]. Moreover, the attacker can predict
which vulnerabilities are available to exploit depending on the type

of IoT devices in the network. However, extensive research has been
conducted on fingerprinting the IoT devices using eavesdropping
from the inside network [24]. This research performs a detailed
investigation and proves that fingerprinting the IoT devices eaves-
dropping from outside the network is not only possible but also a
straightforward process. The developers of the IoT devices must
need to consider some extra security constraints to overcome those
privacy threats.

3.2 Threat Model

In the proposed research, we consider that the attacker aims to target
the information of IoT devices using a targeted WiFi network. More-
over, the attacker is also interested in the number and type of unique
IoT devices, e.g., Laptop, Smart TV, Light Bulb, etc. Moreover, the
attacker is also interested in getting the mode of those devices, such
as idle or active. The attacker intends to gain maximum sensitive
information by gathering the devices’ data. For example, the device
type may reveal potential vulnerabilities to software/hardware status.
The number of devices may reveal the customers in business, the
number of employees, or the family size. The type and number both
can reveal the status of socioeconomic.

Considering this as a potential threat model, we aim to perform a
detailed investigation that fingerprinting the IoT devices eavesdrop-
ping from outside the network is a straightforward process. This
threat should be considered in the first place.

3.3 Assumptions

In the proposed research investigation, we assume that the attacker
continuously observes the network traffic outside the network using
the targeted WiFi or access point. We also believe that the attacker
is physically in the signal range of the access point, so he can per-
form eavesdropping using a sniffing tool and gather the nearby WiFi
network traffic. We assume that the attacker can’t join or break the
network. To this end, in the proposed research investigation, we
prove that fingerprinting the IoT devices from the outside of the
network eavesdropping is possible. Moreover, the existing research
focuses on the IoT devices operated at 2.4GHz; we consider the
same. However, the proposed study can be applied to 5GHz as well.

4 System Model
In this section, we first present the system architecture, and then we
discuss how the attacker captures the network traffic from outside
of the network. After that, we present the pre-processing of the
captured data.

4.1 System Architecture

In the proposed investigation, we consider the system architecture
illustrated in Figure 2 where the attacker uses to access the WiFi
network. The system architecture consists of two stages, offline
and online. The first stage (offline) is the attacker’s profiling model
training and building stage, where an attacker uses his computer
and many IoT devices to conduct experiments in order to build the
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profiling model of each IoT device. On the other hand, the second
stage (online) is the attacking stage, where the attacker monitors a
WiFi network, trying to identify all IoT devices in the WiFi network
based on monitored data and profiling models built in the offline
stage. In the first stage (offline), the attacker configures maximum
IoT devices which are connected to the nearby WiFi gateway. The
attacker accesses the network traffic using a sniffing tool, where the
traffic data would be labeled as the device name using the MAC
address. The collected data is then pre-processed, where we re-
moved the noise (e.g., network traffic gathered from nearby WiFi
networks, data link layer broadcast frames, WiFi protocol beacon
frames), and dumped the valuable features into a CSV file for apply-
ing the machine learning techniques. In particular, we apply several
machine learning algorithms and achieve accuracy up to 95% for
device identification.

Figure 2: The attacker’s perspective of profiling attack on the IoT devices.

In the second stage (online), the attacker applies a sniffing tool
and targets the victim’s access point for a short period of, for ex-
ample, 30 seconds, and stores the traces for pre-processing. To
this point, we never require prior knowledge of the IoT devices for
pre-processing, which we will explain in detail later in the follow-
ing subsection. Precisely, we use standard and statistical filtering
techniques to eliminate the noise from the data frames which do not
represent the patterns of data. After that, we use Python scripting to
extract the features from pre-processed data. Finally, we were able
to predict the type of devices and their activity.

4.2 Traffic Capturing From Outside of the WiFi Net-
work

In order to capture the data frames from outside of the WiFi net-
work, we first test to use the two most popular sniffing tools, Kismet1

and Airodump-ng2. Kismet stores the network traces as SQLite3
database, whereas Ariodump-ng dump the traces into a capture
file format such as pcap3. The output of pcap is used to perform
packet inspection as the output is in a compatible format, where
the packet inspection can be done via a network analyzer such as
Wireshark4. We use those sniffing tools because of their capabil-
ity to sniff raw 802.11 frames. Besides, both of them are able
to monitor single-channel and multi-channel using frequency hop-
ping. For the hardware, we use an external wireless adapter (Alfa
AWUS036ACM) as the built-in WiFi cards don’t serve our purpose
because they are programmed to accept the data packets which are
particularly addressed to the machine’s interface card.

Once the captured traffic is analyzed, we observe that a signifi-
cant proportion of captured packets contradicts the elephant-mouse
internet traffic phenomenon [25]. The elephant flows of 1500 bytes
were unable to see for all the available devices, including the video
packets captured from a Camera or a smart TV. The proposed in-
vestigation shows that the aforementioned tools can only capture a
limited range of packets in terms of their sizes. For example, they
are able to capture the packet up to the frame size of 472 bytes; how-
ever, this size is enough for particular applications such as signal
intelligence. Due to such limitations of Kismet and Airodump-ng,
we consider another sniffing tool called Airtool5. The Airtool snif-
fer is a MAC’s built-in sniffing tool that can passively sniff WiFi
traffic and store the traces in a pcap format which can be further
analyzed using Wireshark. We simultaneously run Wireshark on
a different laptop connected to the network to record its own in-
coming/outgoing network traffic to the AP in order to confirm the
accuracy of the traffic caught by Airtool which is running on an
out-of-network MacBook. The traffic between the second laptop
connected to the network and the AP was considered for comparison
of those two traces.

Size Range of Packets/Frames Wireshark Airtool
#Packets #Frames #Data Frames

0-19 0 2428 0
20-39 0 5593 199
40-79 2441 0 0
80-159 260 2890 2883

160-319 108 239 239
320-639 173 194 190
640-1279 241 255 255

1280-2559 13574 13846 13846
Total 16797 25445 17612

Table 1: Comparison of captures by out-of-network Airtool with the in-network
Wireshark.

Because Airtool also records additional control and management
frames at the data-link layer (most frames have sizes between 0 and

1https://www.kismetwireless.net
2https://aircrack-ng.org/doku.php?id=airodump-ng
3https://en.wikipedia.org/wiki/Pcap
4https://www.wireshark.org/
5https://www.intuitibits.com/products/airtool
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39), which are absent from Wireshark’s in-network traffic captur-
ing, we discovered that Airtool collects more frames than packets
recorded by Wireshark, as shown in Table 1. Every frame that is
collected by Airtool is translated into a WiFi data-link layer frame,
whereas every frame that is captured by Wireshark is translated into
an Ethernet II frame. As a result, for the same WiFi packet, the
Wireshark capture is smaller than the Airtool interpretation of the
data-link layer frame. This explains why the 2441 packets in the
Wireshark capture that are between 40 and 79 bytes all show up
in the Airtool capture’s higher packet size range (80 to 159 bytes).
Additionally, the comparison holds even after excluding all control
and management frames from the Airtool capture (as seen in the last
column), so there aren’t any apparent missing packets according to
Airtool. As a result, we employ Airtool as our testbed for evaluation.

4.3 Data Pre-Processing on Captured Data

Once the encrypted WiFi traffic data is captured using the Airtool
software, the output in pcap format is analyzed using the Wireshark
tool. In particular, the following steps are taken to analyze the
captured data:

1. We start with the traffic broadcasting in both directions to
the MAC address of the WiFi network under investigation.
This is required since Airtool could potentially monitor WiFi
traffic from many neighboring APs. Only data frame types
are kept since all other control, and management MAC-layer
frames do not adequately depict the profiling data pattern.

2. We export the pcap files into the csv files for the following
steps number 3 and 4.

3. We eliminate noisy frames that some MACs produced. Since
they often only appeared as a single frame, these noise frames
are simple to filter out. By just keeping traffic frames with
bi-directional communication traffic, they are filtered away.

4. To make dataset labeling easier, we swap out the MAC ad-
dresses for the relevant device names and their operational
status. This step is included only in the offline training stage.

5. The dataset required for both offline training and performance
testing is eventually obtained using a Python script that ex-
tracts and calculates statistical characteristics.

5 Data Processing and Analysis
In the section, we first discuss the observable Data Fields, and then
we discuss data analysis. Finally, we discuss device profiling on
time-series data.

5.1 Useful Data from Network Monitoring

As we have discussed earlier, the process of out-of-network monitor-
ing. Here, we present the observable data fields on a secured WiFi
network where everything above the data-link layer is encrypted
because of WiFi protocol WPA-PSK. Because of this encryption,
the only observable data is the MAC-layer frame header, signal

strength, and the observation timestamp. The frame header pro-
vides the source and destination’s MAC addresses, frame size, and
frame type. However, the signal strength cannot be used as it
has been affected by several factors such as neighboring WiFi net-
works, deflection, absorption, and reflections of the surrounding
objects. Therefore, in the proposed investigation, we neglect the
signal strength and only use the MAC layer frame header.

Figure 3: The total number of data packets captured with respect to the IoT device.
Many devices’ names show whether they are in active or in an idle state.

5.2 Data Analysis

As discussed earlier, we consider 10 different IoT devices and col-
lected their data through out-of-network monitoring. In Figure 3,
we show the total percentage of captured data from each device. To
provide insights into the monitored traffic, we measure the working
and idle status of all the IoT devices. From Figure 3, we can observe
that the number of received packets from TV is more than the other
IoT devices such as the camera and Google. All of the other devices’
captured data are comparatively way less than those three devices.
Consequently, the camera and google both display different behavior
with regard to packet sizes, as shown in Figure 4. Specifically, the
camera and google both appear to send the majority of their packets
at a fixed size of 170 bytes and 140 bytes, respectively, as shown in
Figure 5. We will discuss this part in the following section.

As shown in Figure 3, we believe that the attacker can easily
build the signature. Moreover, the attacker can also change the
status of those IoT devices. As we can see in Figure 3, there is a
huge difference between the active and idle states of the devices
which means the AP initiated communication to send an off signal
to those devices. On the other hand, due to the notable decline in
flow when switching to the idle state, the working condition of other
devices with better network capabilities and memory storage, such
as iPhones, printers, and Amazon, is impressively noticeable. For
instance, Amazon will only get a small number of packets when it
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is idle because the user is not searching the Internet. Similarly, we
show a detailed transmission of data packets from each IoT device
in Figure 4. In particular, we show the total number of packets sent
from the access point to the IoT device, which is represented by 1,
and the total number of packets sent from IoT devices to the access
point, which is represented by 0. Moreover, the figure depicts both
the total data captured in the active and idle states of all the devices.

5.3 Machine Learning Techniques

In order to execute our investigation, we choose several classifi-
cation methods, and a popular machine learning model XGBoost
[26]. We consider XGBoost because of its superior performance,
especially for the problems of network classification among other
popular machine learning models. Because our data is captured in
two different sequence sizes, so we consider precision, recall f-1
score, and support vector machine (SVM) as performance metrics
to tackle the time series data.

5.4 Profiling on IoT Devices using Time-series Data

Processing time-series data is simple. The captured traces from
the Data-link layer is converted into a string of three-feature
items. The monitored frame is then converted into three nu-
meric values: the size of packet P, the direction of packet X,
and the arrival time Y , where 0 represents the transmitted pack-
ets and 1 represents the received packets by an IoT device. Fol-
lowing those numeric values, we can obtain the series of data
such as {P0, X0,Y0}, {P1, X1,Y1}, ..., {Pn, Xn,Yn}. Figure 5 shows the
heatmap of the correlations for each feature in the dataset, where 1
shows the maximum value, and 0 shows the minimum.

This method’s main disadvantage is that it needs a lot of packets
to supply all the data points needed for categorization or machine
learning training. In our case, we are dealing with a heterogeneous
system monitored inside a specific time window; certain devices
(such as Smart TV) generate a large volume of data packets while
others only produce very sparse packets (such as smart light bulb).
For instance, if we compare how long it takes the light and TV to
collect a 100-packet series, the TV just needs one second of visible
data while the light needs approximately 30 minutes.

To overcome this challenge, we use a two-level categorization
technique, starting with a traffic intensity threshold. Devices are
divided into two groups in the first level according to whether there
is a high or low volume of traffic. Then, in accordance with the
volume of device traffic, we use an appropriate sequence size. Using
ML algorithms, the second level determines the prediction proba-
bility. A prediction is made if the probability rises above a certain
threshold; else, the data is labeled as an ”unknown” device. Once
the dataset is created, we extracted the following features from the
monitored traffic in each time window:

• Packets transmitted and received by the access point to and
from the IoT devices, respectively.

• The difference in inter-arrival time.

• Total number of bytes in the transmitted and received packets.

• Variance of sizes in transmitted and received packets.

• Variance of size distribution in transmitted and received pack-
ets.

• Mode of transmitted and received packets.

• The average number of consecutively transmitted or received
packets before seeing a received or transmitted packet, respec-
tively.

Figure 5: Correlation of features in a dataset.

6 Results and Discussion
In this section, we first present the testbed settings and the evaluation
metrics. Afterward, we show the IoT devices’ packets transmission
and their reception in terms of packet length, and time. Finally,
we show the evaluation results and prove that the outsider intruder
can significantly harm the IoT devices without joining the WiFi
network.

6.1 Testbed and Evaluation Metrics

With the help of a WiFi router, we built up a testbed with 10 distinct
IoT devices. We use AirTool to capture the WiFi data frames be-
tween all IoT devices and the WiFi router for an appropriate amount
of time in order to collect enough data. Once the data is captured,
we use a time-series format and randomly split the dataset into two
groups, 20% for testing and 80% for training.

The following metrics are used to assess our classification mod-
els: Precision, Recall, F1 Score, and Accuracy. Let’s use the abbre-
viation T to stand for true prediction, further subdivided into true
positives and true negatives. The letters F stand for false prediction,
which is further divided into false positives and false negatives. The
following equations are used to measure the Precision, Recall, F1
Score, and Accuracy, respectively.
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Figure 4: Total number of packet transmission from access point and IoT devices, respectively. In particular, the figure shows the total number of packets sent from the
access point to the IoT device, which is represented by 1, and the total number of packets sent from IoT devices to the access point, which is represented by 0.
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(a) Box plot for packet length frames of 10 IoT devices. (b) Box plot for the time taken by packets of 10 IoT devices1.

Figure 6: Packet length and time-taken in transmission or reception of 10 IoT devices.

Precision =
T P

T P + FP
(1)

Recall =
T P

T P + FN
(2)

F1 − S core = 2 ×
Precision × Recall
Precision + Recall

(3)

Accuracy =
T

T + N
(4)

Figure 7: Packets transmission in both directions of each IoT device with respect to
time.

6.2 Captured Data

Before going to the evaluation, we first show the captured data in
terms of packet length and time. In Figure 6, we show the packet
length and time taken in transmission or reception of 10 IoT de-
vices, respectively. In particular, in Figure 6 (a), we show a box
plot for the packet length of 10 IoT devices. The packet length of

each device is captured in both active and idle states. Similarly,
in Figure 6 (b), we show a box plot for the time taken by packets
to transmit or receive by each IoT device in both active and idle
states. To further show the significance of captured data, in Figure
7, we show the packet transmission in both directions (IoT device
to access point and access point to IoT device) with respect to time.
The line in the middle of the box shows the average length of the
packet transmitted or received. In particular, 0 represents the packets
transmitted from the IoT device to the access point, and 1 represents
the packets transmitted from the access point to the IoT device.
The above-mentioned box plots prove that a significant amount of
data is captured in the proposed investigations, where an attacker
can easily access the useful information of the IoT devices and can
significantly harm the user. We also prove that the IoT devices can
reveal the potential vulnerabilities to hardware/software status as
the attacker can change the status of IoT devices.

Considering this as a potential achievement in our investigation,
below we present the results of model accuracy, which can further
support our claim.

6.3 Results

We chose a 30-minute time window size for evaluation. We believe
that long-term observed traces can teach us more about time-series
patterns than short-term ones, which call for much longer time ob-
servations to carry out the attack. As we were facing a challenge
in working with imbalanced data, for example, data captured from
some devices are extremely high such as TV or Camera, whereas
other devices are barely showing any record for example Nest, Light
as shown in Figure 3. To balance such data, we use SMOTE anal-
ysis to prove the significance of the results. Figure 8 shows the
confusion matrix of prediction accuracy using a SMOTE analysis
on the XGBoost model. The Figure shows that the IoT device
”Printer active” captures maximum true labels, whereas the IoT
device ”google idle” captures minimum true labels.

www.astesj.com
https://dx.doi.org/10.25046/aj050501

8

https://www.astesj.com
https://dx.doi.org/10.25046/aj050501


Figure 8: Predicted labels of each IoT device.
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Figure 9: Machine learning model accuracy on Precision, Recall, and F1-Score.

Finally, we show the accuracy of all 10 IoT devices in each
active and idle state with respect to Precision, Recall, and F1-Score.
In order to provide a significance of the results, here we consider the
captured data without balancing and show the result without modify-
ing any values. In Figure 9, we show that the model achieves 95% of
accuracy. We attribute this performance to the XGBoost model, as it
performs significantly well over imbalanced classification datasets.

7 Discussion and Future Work

Our findings support the hypothesis that an outside-of-network at-
tacker can successfully identify IoT devices without connecting to
a WiFi network. The type of devices and their operating modes
may be determined by characteristics like the number of packets,
inter-arrival time, packet sizes, and distributions. The attack is
straightforward to execute without leaving any traces or fingerprints.

The profiling attack causes serious privacy issues. A potential
attacker could drive close to a business to evaluate the volume of
economic activity, the socioeconomic background of the clients,
expected revenues, revenue trends, or even find possible weak tar-
gets for future attacks. It can provide environmental awareness that
can be utilized to track mobile devices in more complicated circum-
stances (e.g., cars, drones, phones, etc.). For instance, a swarm of
drones can be deployed over a sizable area to classify, identify, and
monitor the movement of signal-emitting devices in the covered
area. This might show how gadgets communicate with one another
and show where each device travels.

As we have proved that the experimental testbed is reliable and
has significant importance in the real-world, the implementation in
real-world scenarios is of utmost importance to secure the privacy
of the individual. To this end, we aim to further extend the proposed
implementation in real-world scenarios, where we would be able to
show the further importance of such attacks.

8 Conclusion
This paper investigates a privacy leakage from an out-of-network
eavesdropper on encrypted WiFi traffic. To this end, we consider
10 IoT devices and capture their data from outside the network
without joining the WiFi network. During the investigation, we
prove that IoT device eavesdropping is not only possible but also
a straightforward process. To this end, we exploit the WiFi frame
timing and header information and conduct a detailed evaluation
using a machine learning technique for inferring and fingerprinting
which IoT device exists in the network and what working status
each device is. The models we found had exceptional high accu-
racy, they are most likely approaching the point where subsequent
improvement becomes more difficult and might even come with
the loss of generalizeability [27]. Our evaluation achieves high
accuracy, up to 95%, in identifying the devices and their working
status. The experimental results show that outside intruders can
significantly harm the IoT devices without joining a WiFi network
and can launch the attack within a minimum time without leaving
any detectable footprints.
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