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Abstract—Cognitive Radio Networks (CRN) employ coexistence pro-
tocols for spectrum sharing when collocated in a given region. Existing
coexistence protocols do not take into consideration the fact that available
spectrum bands vary significantly in their characteristics and quality they
provide which makes some channels of the spectrum more attractive than
others. In this paper, we analyze this situation from an evolutionary game
theoretic perspective and show how CRNs would evolve their strategies of
contending for disparate spectrum resources. We derive the equilibrium
state for CRNs’ spectrum sharing game and show that the population
mix in equilibrium cannot be invaded by a mutant strategy which is
greedier than the incumbent strategy and is therefore an evolutionarily
stable strategy (ESS). We also derive the replicator dynamics of the
proposed evolutionary game which represent how players learn from
payoff outcomes of their strategic interactions and modify their strategies
at every stage of the game. Since all players approach the ESS based
solely on the common knowledge payoff observations, the evolutionary
game can be implemented in a distributed manner. Simulation results
show that the replicator dynamics enable strategic choices of CRNs to
converge to ESS and also make them robust against changing network
conditions.

Index Terms—Cognitive Radio, Coexistence, Game Theory.

I. INTRODUCTION

Existence of a wide gap in the demand and supply of wireless
spectrum resource forced regulatory bodies such as the FCC to allow
un-licensed access to spectrum bands, also referred to as the TV
white spaces, otherwise licensed to the Primary Users (PU) in an
opportunistic and non-interfering basis [1]. This has given rise to
a challenging as well as an exciting type of networks called the
Cognitive Radio Networks [2], [3]. CRNs employ Dynamic Spectrum
Access (DSA) to ensure that their use of spectrum does not cause
interference to the PU and that all spectrum opportunities are utilized
to the maximum. In many cases, a central entity such as a CRN base
station controls the use of specific channels in a spectrum band within
the CRN: IEEE 802.22 wireless regional area networks (WRANs)
[2], [3] is an example of such a network. However, there may be
many CRNs collocated in a region all of whom compete for access
to the available channels, a situation called self co-existence in the
context of CRNs. IEEE 802.22 WRANs employ contention beacon
protocol (CBP) to deal with self co-existence problems. However,
these protocols do not take into consideration the fact that these
channels can be heterogeneous in the sense that they can vary in their
quality such as bandwidth, SNR etc. Without any mechanism that
enforces fairness in accessing varying quality channels, coexistence
for CRNs is likely to become a very difficult task. In this paper, we
model heterogeneous spectrum sharing in CRNs as a non-cooperative
evolutionary game where the payoff for every player in the game is
determined by the quality of the spectrum band to which it is able
to gain access.

Motivation: The FCC requires CRNs to periodically access online
databases for up-to-date information about PU activity in their area
of operation [1], [3]. Information regarding availability of spectrum

bands for secondary access in a given region can therefore be assumed
as common knowledge and the amount of PU activity which for the
purpose of this paper also determines a channel’s quality, can be
observed / learnt over a period of time. Notice however, that any
other metric can be used to represent a channel’s quality without
affecting subsequent analysis. Being rational about their choices,
every player has a clear preference of selecting the best available
channels with the lowest probability of PU activity before the start
of every time slot. However, if every player tries to access the
best available channel, it will result in collision and the spectrum
opportunity being wasted. Players that eventually gain access to
channels with low probability of PU activity will gain higher payoffs
as compared to the players that end up accessing higher PU activity
channels. To study how players (CRNs) in the spectrum sharing game
evolve their channel selection strategies, we formulate an evolutionary
game theoretic framework and prove that the mixed strategy Nash
Equilibrium is the evolutionarily stable strategy (ESS). We also
derive the underlying process of Replicator Dynamics by which
players evolve their strategies over a period of time and converge to
ESS. Adaptation of channel selection strategies is based on CRNs’
payoffs at every stage of the game i.e., every time slot. To the best
of our knowledge, this research is the first attempt to solve the
problem of heterogeneous spectrum sharing in CRNs with the help
of evolutionary game theoretic concepts, however some of the related
works are presented next.

Evolutionary game is applied in [4] to solve the problem in a
joint context of spectrum sensing and sharing within a single CRN.
Multiple SUs are assumed to be competing for unlicensed access to
a single channel. SUs are considered to have half-duplex devices so
they cannot sense the channel and access it at the same time. The
problem of self-coexistence in CRNs is dealt with in [5] using a graph
theoretic approach called utility graph coloring (UGC). Allocation
of spectrum for multiple overlapping CRNs is done in UGC to
minimize interference and maximize spectrum. Evolutionary game
theoretic concepts are applied in [6] to make secondary users (SU) of
a CRN participate in collaborative spectrum sensing in a decentralized
manner. The authors of [7] tackle the self-coexistence problem of
finding a mechanism to achieve the minimum number of wasted time
slots for every collocated CRN to find an empty spectrum band for
communications. They employ a distributed modified minority game
under incomplete information assumption. Punishment strategies in
a Gaussian Interference Game (GIG) are employed in [8] for a one
shot game as well as an infinite horizon repeated game to enforce
cooperation in spectrum sharing among SUs of a CRN.

II. SYSTEM MODEL

In this paper, we consider a region where overlapping CRNs co-
exist and compete with each other for secondary access to the licensed
spectrum bands. We model the entire spectrum band that is available
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for unlicensed use by CRNs as a set of K = (1, 2, ..., k) channels.
The spectrum band is heterogeneous by virtue of the quality of a
channel which is determined by the probability Pk with which PUs
access their licensed channels. Higher Pk for a given channel k
means it is of a lower quality and vice versa and CRNs compete
to access the best quality channels. Gaining access to higher quality
channel results in higher payoff while lower quality channel yields
lower payoff for CRNs where payoff uk = 1 − Pk from gaining
access to channel k . CRNs need to gain access to a channel in
every time slot also called a Channel Detection Time (CDT) slot
[2]. CRNs are independent entities i.e., they do not share a common
goal and therefore do not cooperate with each other. It is in every
CRN’s interest to gain access to the channels with minimum PU
activity i.e., minimum value of Pk. When two or more CRNs select
the same channel for access in a given time slot, a contention situation
arises and that particular time slot’s spectrum opportunity is wasted.
Since knowledge of PU’s spectrum allocation/activity is mandated
by the FCC for CRNs [1], [2], is publically available through online
databases and also sensed by CRNs at regular intervals, calculation
of the current values of Pk by CRNs is trivial. Having payoffs for
selecting a specific channel derived from common knowledge such
as Pk is an intuitive choice and makes distributed implementation
of our proposed framework possible. As demonstrated subsequently,
the number of collocated CRNs does not play any part in the game
model because an evolutionary game is concerned with the evolution
of strategies, associated payoffs and their stability.

III. EVOLUTIONARY SPECTRUM SHARING GAME

When strategic interactions of a population mix result in conver-
gence to equilibrium state over a period of time and if that state
cannot be invaded by a mutant strategy then the incumbent strategy
is called Evolutionarily Stable Strategy (ESS). The objective of an
evolutionary game is to evolve a strategy that is ESS. Using this
concept, we model the problem of self-coexistence and heterogeneous
spectrum sharing in the following subsections as an evolutionary
game framework.

A. Game Formulation

The evolutionary game is represented as 〈C, (A), (U)〉, where
players in the game are CRNs represented by C. Let K =
{1, 2, ..., k} denote the set of available channels for secondary access.
Every player in the game has the same action space represented by
the set A = {a1, a2, ..., ak} where the strategy ak means selecting
channel k for communication during the next time. Also, there is
a bijection between the sets A and K. The CRNs gain a specific
payoff when they are successful in utilizing a spectrum opportunity
in a channel. The payoff for players playing strategies ak and aj
when competing against each other is denoted by the ordered pair
u(ak, aj) ∈ U and is a function of Pk given by:

u(ak, aj) =

{
(1− Pk, 1− Pj) when k 6= j

(0, 0) when k = j
0 < Pk, Pj < 1

(1)
where the first element of the ordered pair u(ak, aj) represents the
payoff for players that selected channel k and the second element
for players selecting channel j. The aforementioned game can also
be represented in strategic form as Table I, which shows how two
strategies perform when they are pitched against themselves and
against other strategies. Without any loss of generality, assume that
Pk < Pj , then all CRNs will be tempted to choose channel k instead
of channel j for a larger payoff. Also, when k = j i.e., when two or

TABLE I: Strategic form representation of Evolutionary Spectrum
sharing game with strategies ak and aj .

ak aj
ak (0, 0) (1− Pk, 1− Pj)
aj (1− Pj , 1− Pk) (0, 0)

more players select the same channel for the upcoming time slot,
the payoff is 0 for all players as it results in collision. For the
sake of simplicity and without the loss of generality, we show the
game formulation and its analyses with two competing strategies i.e.,
the players select one out of the two available channels. The same
mechanism can be employed for multiple heterogeneous channels as
shown in the performance evaluation section.

B. Equilibrium strategies for the Evolutionary Spectrum Sharing
Game

For the sake of completeness, we provide the definitions of pure
and mixed strategy Nash Equilibria (NE) before analyzing the ESS.

Definition 1: The pure strategy Nash Equilibrium of the spectrum
sharing game is an action profile a∗ ∈ A of actions, such that [9]:

u(a∗i , a
∗
−i) � u(ai, a

∗
−i),∀i ∈ K (2)

where � is a preference relation over utilities of strategies a∗i and
ai. The above definition means that for a∗i to be a pure strategy NE,
it must satisfy the condition that no player i has another strategy that
yields a higher payoff than the one for playing a∗i given that every
other player plays their equilibrium strategy a∗−i.

Lemma 1: Strategy pairs (ak, aj) and (aj , ak) are pure strategy
NE of the evolutionary game.

Proof: Consider a pairwise competition of two channel selection
strategies employed by two CRNs picked randomly from a large
population. Assume player 1 to be the row player and player 2 to be
the column player in table I. From (1) it follows that both (1−Pk) and
(1−Pj) are positive values and therefore the payoffs for strategy pairs
(ak, aj) and (aj , ak) are greater than the payoffs for strategy pairs
(ak, ak) and (aj , aj). Consider the payoff for strategy pair (ak, aj)
from table I. Given that the player playing strategy aj continues to
play this strategy, then from definition-1 for a Nash Equilibrium, it
follows that the player playing strategy ak does not have any incentive
to change its choice to aj , i.e., it will receive a smaller payoff of 0 if
it switched to aj . Therefore, (ak, aj) is a pure strategy NE. Similarly,
strategy pair (aj , ak) is the second pure strategy Nash Equilibrium
for this game.

Definition 2: The mixed strategy Nash Equilibrium of the spectrum
sharing game is a probability distribution p̂ over the set of actions A
for any player such that [9]:

p̂ = (p1, p2, ..., pk) ∈ Rk
≥0, and

k∑
j=1

pj = 1 (3)

which makes the opponents indifferent about the choice of their
strategies by making the payoffs from all of their strategies equal.
In (3), pk is the probability of a CRN selecting channel k. This
also makes the proportion of population that selects channel k for
communication in a given time slot equal to Pk. For a pairwise
competition in the CRN population and a 2−channel scenario, let
α be the probability with which player 1 plays strategy ak and
β = (1 − α) be the probability of playing strategy aj , then from
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the payoffs of table I, the expected payoff of player 2 for playing
strategy ak is given by:

EU2(ak) = αu(ak, ak) + βu(aj , ak) = α(0) + β(1− Pk) (4)

Similarly, the expected payoff of player 2 for playing strategy aj is
given by:

EU2(aj) = αu(ak, aj) + βu(aj , aj) = α(1− Pj) + β(0) (5)

According to definition 2, player 2 will be indifferent about the choice
of strategies when the expected payoffs from playing strategies ak
and aj are equal, i.e.,

EU2(ak) = EU2(aj) (6)

Substituting (4) and (5) in (6), we have β(1 − Pk) = α(1 − Pj).
Therefore:

α =
1− Pk

(1− Pk) + (1− Pj)
(7)

β =
1− Pj

(1− Pk) + (1− Pj)
(8)

Therefore, the mixed strategy NE for the evolutionary game is given
by the distribution p̂ = {α, β} which means that when both players
select strategies ak and aj with probabilities α and β respectively,
then their opponents will be indifferent about the outcomes of the
play. This also means that all CRNs in a given region form a
polymorphic population in which every CRN mixes for its choice of
available channels according to the probability distribution p̂ which
is the mixed strategy NE for our evolutionary channel sharing game.

C. Analysis of Evolutionary stability of the Equilibria

We analyze the evolutionary stability of the Nash equilibria with
the help of definition 3 as follows:

Definition 3: For a strategy to be ESS, it must satisfy the
following conditions [10]:

1. u(p̂, p̂) ≥ u(p′, p̂) and
2. if u(p̂, p̂) = u(p′, p̂) then u(p̂, p′) > u(p′, p′)

where p̂ is the strategy played by the population and can therefore be
termed as the population’s incumbent strategy while p′ is a mutant
strategy that competes with the incumbent strategy. According to
the first condition of definition 3, an incumbent strategy (1) must
be a symmetric NE and (2) must perform at least as good against
itself as it does against a mutant strategy. According to the second
condition of definition 3, if an incumbent strategy is not a strict NE
then the incumbent strategy must do strictly better against a mutant
than a mutant strategy does against itself. Now we analyze both
pure and mixed strategy NE according to definition 3 to see if they
are evolutionarily stable.

Evolutionary Stability of pure strategy NE: We proved that the
strategies(ak, aj) and (aj , ak) are the pure strategy NE of our game
in section III-B. If two players play the same strategy i.e., play (p̂, p̂)
and are in equilibrium, then it is said to be a symmetric NE. Clearly,
the pure strategy NE of our game are not symmetric NE and by
equation (1) u(p̂, p̂) < u(p′, p̂). Therefore, pure strategy NE is not
evolutionarily stable according to definition 3. This also shows that a
strategy may be an equilibrium point for a one-shot game; however
it might not be evolutionarily stable in situations where the game is
to be played indefinitely.

Evolutionary Stability of mixed strategy NE: With no pure strategy
NE for our evolutionary game as ESS, we now determine if the mixed

strategy NE that we derived in equations (7, 8) is an ESS according
to definition 3. To do so, we first calculate u(p̂, p̂) i.e., see how the
incumbent strategy p̂ fares against itself and then determine the payoff
of a mutant strategy p′ against the incumbent strategy. Consider the
payoff matrix of table I where the players select strategies ak and aj
with the probability distribution of the incumbent strategy p̂ = {α, β}
then:

u(p̂, p̂) = αβ(1− Pk) + (1− Pj) (9)

In equation (9) above, we have determined the payoff of incumbent
strategy p̂ when it competes against itself i.e., u(p̂, p̂). Now consider
a mutant strategy p′ = {α + δ, β − δ} which is greedier than the
incumbent strategy p̂ and assume that it selects the higher quality
channel k with a higher probability i.e., α+ δ and selects the lower
quality channel j with lower probability i.e., β−δ, where δ is a small
positive number that represents the increase in greediness/probability
of a mutant strategy to select a higher quality channel. Because of
the existence of two competing strategies, we now calculate u(p′, p̂)
i.e., the utility of the mutant strategy against the incumbent strategy:

=⇒ u(p′, p̂) = αβ{(1− Pk) + (1− Pj)}
−δ{α(1− Pk)− β(1− Pj)}

(10)

Since Pk < Pj as assumed in section III-A, we know that α(1−Pk)
is greater than β(1− Pj) and therefore the second term of equation
(10) is positive. From equations (9) and (10) we have u(p̂, p̂) >
u(p′, p̂). Since u(p̂, p̂) is strictly greater than u(p′, p̂), we do not need
to check for the second condition of definition 3 and we conclude
that the incumbent strategy p̂ does strictly better than the mutation
p′, which will die out in the evolutionary game. Hence our mixed
strategy NE cannot be invaded by the greedier mutation p′ and is
therefore an ESS.

D. Replicator Dynamics for the Evolutionary Game

So far we have shown that the mixed strategy NE of our proposed
evolutionary game framework is evolutionarily stable. Evolutionary
stability has provided us with a means to evaluate how the channel
selection strategies perform in the long run when the CRNs do
not cooperate with each other. This concept is somewhat static in
nature because it does not demonstrate the dynamics with which
the strategies converge to an equilibrium state. Replicator Dynamics
[11] explain how players evolve their behaviors by learning through
strategic interactions at every stage/generation of the game to reach
the equilibrium state which is evolutionarily stable. Now we derive
the Replicator Dynamics of our evolutionary game framework with
k channels.

From section III-B, let p̂ = {p1, p2, ..., pk}, where
∑k

j=1 pj = 1,
represent the incumbent strategy of selecting channel k with prob-
ability pk. Furthermore, let u0 be the initial fitness of every CRN,
the average payoff of CRNs selecting channel k at a given stage of
the game be represented by the set U = {u1, u2, ..., uk} and let ū
be the total payoff of the entire CRN population at any given time.
Then payoff for a CRN selecting channel k can be calculated as:

uk = u0 +

|K|∑
m=1

pku(ak, aj),∀k, j ∈ K (11)

where u(ak, aj) is the fitness of a CRN that selects channel k in
a pairwise competition against a CRN that selects channel j. The
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average payoff ū of the entire population of CRNs is given by:

ū =

k∑
n=1

pnun, ∀n ∈ K (12)

Then probability p′k of a CRN selecting channel k for the next
stage/time slot of the game is given by:

p′k = pk +
pk(uk − ū)

ū
(13)

Equations (11)-(13) are the replicator dynamics of our evolutionary
spectrum sharing game. The idea behind the replicator dynamics is
that if selecting channel k in the current time slot results in a higher
average fitness for the CRNs that selected it than the overall fitness
of the entire CRN population, then the proportion of CRNs selecting
channel k in the next time slot will increase. In general, if selecting
a particular channel in a given time slot results in a higher than total
average payoff then that channel will be selected more frequently in
subsequent time slots.

IV. SIMULATIONS AND RESULTS

A. Simulation Setup

We first show the results of simulations in which the collocated
CRNs have only two available channels for which they contend and
converge to an evolutionary stable state. Next, we show that our
evolutionary game converges to ESS with 5 heterogeneous channels
as well. We have carried out simulations for a variety of network
conditions such as PU activity levels and available channels but omit
their discussion due to space limitation.

B. Simulation Results

Figure 1a shows how CRNs select one out of two available
channels during every (CDT [2]) time slot with some probability
where without any loss of generality, channel 1 is assumed to be of
higher quality than channel 2. These CRNs gain a payoff from such
strategic interactions shown in figure 1b and modify the probabilities
of selecting the same channels in subsequent time slots based on
payoffs. Let us first consider payoffs of CRNs that are less greedy.
As shown in figure 1b, CRNs that are less greedy and select the
lower quality channel receive a larger average payoff at t = 1 than
CRNs selecting higher quality channel, which makes them increase
the probability of selecting the lower quality channel at t = 2
(figure 1a). This however, results in lower average payoff for them
at t = 2 than at t = 1 which is still greater than the weighted sum
of average payoffs resulting in even greater probability of selecting
lower quality channel in subsequent stage. A similar yet opposite
pattern can be seen for CRNs that are greedier and select higher
quality channels with higher probabilities. CRNs keep modifying
their channel selection probabilities in the same manner until their
payoffs converge and they reach the ESS, which in the case of figure
1a is p1 = 0.54 and p2 = 0.46 when payoffs for channels 1 and
2 are u1 = 0.9 and u2 = 0.75 respectively. The average payoff uk

of selecting channels is calculated by having the initial payoff u0

of equation (11) normalized to 1. Weighted sum of average payoffs
for the system reaches its maximum and becomes stable when the
channel selection strategies converge to ESS.

(a) (b)

Fig. 1: (a) Probability of selecting channels 1 and 2 i.e., strat a1 &
a2. (b) Average and weighted sum of Payoffs. Convergence to ESS
occurs at t = 25 when prob. of selecting strat a1 approaches 0.54.

(a) (b)

Fig. 2: (a) The game converges to ESS even when network conditions
change at t = 25 (b) Convergence to equilibrium probabilities for
accessing 5 channels of varying quality.

Figure 2a demonstrates the behavior of CRNs playing our proposed
evolutionary game under changing network conditions. At the start
of simulation, network conditions were initialized at u1 = 0.9 and
u2 = 0.5, and after 10 time slots the evolutionary game converged to
ESS. Channel conditions were changed to u1 = 0.75 and u2 = 0.85
at t = 25 which indicates that channel 1, which was previously
of better quality than channel 2, became less attractive for CRNs
because its PU became more active on the spectrum. The CRNs
playing the evolutionary game were able to adapt to changing network
conditions and again converge to a different ESS at t = 35. As a
result of approaching ESS, all CRNs receive the same payoff and the
heterogeneous spectrum resource being distributed fairly.

Figure 2b shows the results of simulating our proposed evolu-
tionary game with 5 channels. It shows that our evolutionary game
converges to ESS even with multiple channels of varying quality.
However, increase in number of available channels results in slower
convergence to ESS at t = 80 with 5 channels as compared with
t = 25 with 2 channels in figure 1a.

V. CONCLUSION

Coexistence protocols employed by CRNs do not consider that
spectrum bands vary in quality thereby making some channels of the
spectrum bands more attractive to CRNs than others. In this paper, we
aimed at answering the fundamental question of how CRNs should
share heterogeneous spectrum bands fairly in a distributed manner
and proposed an evolutionary game theoretic framework to achieve
that. We derived equilibrium strategies for CRNs spectrum sharing
game for selecting particular spectrum bands and proved that the
mixed strategy Nash Equilibria derived in the process are evolutionar-
ily stable strategies (ESS). We also derived the Replicator Dynamics
with which players learn from payoff outcomes of their strategic
interactions and approach ESS solely upon the common knowledge
payoff observations making possible its distributed implementation.
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