
DISCOVERING VULNERABILITIES AND DESIGNING TRUSTWORTHY DEFENSES IN IOT 

SYSTEMS AND DEVICES 

 

 

 

 

 

 

 

 

by 

 

 

 

 

BRYAN PEARSON 

B.S. Stetson University, 2018 

 

 

 

 

A dissertation submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

in the Department of Computer Science 

in the College of Engineering and Computer Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

 

 

Spring Term 

2023 

 

 

 

 

 

Major Professor: Xinwen Fu 

  



ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2023 Bryan Pearson 

  



iii  

 

ABSTRACT 

Internet of Things (IoT) dominates many functions in the modern world, from sensing and reporting 

temperature, humidity, and air quality, to controlling and automating homes, commercial buildings, and 

equipment. However, IoT systems have received scrutiny in recent years due to countless security incidents, 

which can have physical and even deadly consequences. This research provides a comprehensive 

assessment of the security of IoT systems and devices, including low-cost microcontroller (MCU) based 

sensors, cloud services, and Building Automation Systems (BAS). We begin by exploring the current 

landscape of vulnerabilities and defenses in modern IoT applications. We show that many security needs 

can be satisfied by modern low-cost MCUs. We discuss how to implement crucial security features in IoT 

and illustrate use cases through ESP32 MCUs. Next, we investigate vulnerabilities against popular IoT 

systems and devices. We present a systematic attack model against Message Queuing Telemetry Transport 

(MQTT) software implementations. We design, implement, and evaluate a fuzz testing framework for 

MQTT using Markov chain modeling to rigorously exhaust the protocol and identify vulnerabilities. We 

then demonstrate the plausibility of well-known software attacks on IoT devices. These attacks can be used 

to remotely steal private keys that are hard coded in the firmware. We also expand our fuzzing research to 

Building Automation Systems (BAS) devices and software, which are susceptible to similar vulnerabilities 

as conventional IoT systems and devices. We use dynamic instrumentation and packet analysis to probe the 

communications between BAS clients and BAS IP interfaces to extract an annotated corpus for mutational 

fuzzing. Our fuzzer discovered vulnerabilities in various KNX and BACnet devices and software. After 

exploring these attacks, we discuss how to protect sensitive data in IoT applications using crypto 
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coprocessors. We present a framework for secure key provisioning that protects end usersô private keys 

from software attacks and untrustworthy manufacturers. 
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CHAPTER 1:  INTRODUCTION  

Internet of Things (IoT) interconnects everything including physical and virtual devices together 

through communication protocols. IoT has broad applications in digital health care, smart cities, 

transportation, building automation, agriculture, logistics, and many more domains. The global 

IoT market is booming. According to Statista, the IoT market will reach $1.6 trillion by 2025 [1]. 

However, the popularity of IoT has raised grave concerns about security and privacy. When 

medical devices are connected to the Internet, compromised medical devices may endanger the 

lives of patients. Hackers can force autonomous vehicles to crash and may also steal credentials 

from consumer and medical products. In recent years, botnets such as Mirai [2] and Reaper [3] 

exposed vulnerable networks and compromised millions of devices. 

The security landscape of IoT is broad and complex. Adversaries can infiltrate and compromise 

an IoT system through the hardware, firmware/OS, data, network, and software. With physical 

access to the device, an adversary may utilize side-channel attacks [4] [5] or leverage external 

I/O ports to read sensitive data on the firmware, overwrite the application, disable peripherals 

and other device functions, and perform other attacks [6]. Even when I/O interfaces are disabled 

and side channels are eliminated, it is possible for an attacker to read the firmware directly off 

the flash chip if the contents are stored in plaintext or the encryption key is recoverable. If the 

firmware is not securely signed by an authorized vendor before being loaded onto the device, or 

if the signing key is compromised, then an adversary can forge his own valid firmware images 

and defeat the integrity of the system, even with other security measures in place. Without 

adequate network security ï i.e., cryptographically secure mutual authentication, confidentiality, 
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and integrity at the transport layer ï an attacker can conduct many attacks; for example, a 

spoofed client can solicit credentials from the server, and a fake server or fake user can collect 

sensitive data from the client. Vulnerabilities can also arise in software, and adversaries can 

conduct software attacks remotely to compromise credentials or threaten the control flow 

integrity of the application. Without secure over-the-air updates (OTA), vendors cannot reliably 

deliver software patches to IoT devices. 

A common misconception is that securing an IoT system against these attacks is difficult, 

expensive, or unreasonable due to hardware constraints. However, this is not the case [6]. 

Modern IoT devices such as ESP32 and CC3220 run on low-cost microcontrollers (MCUs) 

which can provide adequate security and privacy to users and satisfy the performance 

requirements of the application. For instance, ESP32 has dedicated hardware extensions for 

ensuring firmware encryption, secure booting of the application, and secure key storage. MCUs 

powered by the ARMv8-M processor architecture implement the popular TrustZone technology 

to provide a trusted execution environment (TEE) for applications and protect the software 

integrity [7]. Many MCUs also usually contain hardware acceleration of cryptographic functions 

such as RSA and AES to reduce the time cost of network security (e.g., the TLS handshake). 

Additionally, due to the extensibility of MCUs, legacy IoT devices such as ESP8266 can be 

protected by pairing them with external security modules such as cryptographic processors [8].  

We place particular emphasis in this dissertation on software security, due to the inherent 

difficulties in writing bug-free software. Software attacks are widely diverse and include stack 

and heap-based buffer overflow (BOF), format string attacks, code injection, return-oriented 

programming (ROP), jump-oriented programming (JOP), and various other attacks. The severity 
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of these attacks varies from system to system. Even with the exact same software, different 

devices may be susceptible to different vulnerabilities due to hardware and architectural 

differences across devices [8] [9]. Even a ñperfectly secureò IoT system can be compromised 

later due to the discovery of zero-day exploits or vulnerabilities introduced by a firmware 

upgrade. For instance, research has shown that applications protected by TrustZone ï a feature 

touted for its security promises ï can still be compromised through clever software attacks [10]. 

When securing a whole IoT system, it is not sufficient to only secure the end devices. IoT is 

comprised of a network that includes end devices, remote cloud servers, and users [11]. Cloud 

servers perform authentication, process data, and relay traffic between users and end devices. 

Users interact with devices remotely via the cloud server, e.g., by viewing data and sending 

control commands. Both cloud servers and end users can be compromised too [12] [13]. Cloud 

servers often establish a single point of failure and can bring down every node in the network if 

they are compromised. 

A popular communications protocol that connects IoT devices to the cloud is Message Queuing 

Telemetry Transport (MQTT) [14]. MQTT has been called the ñde-facto standardò for IoT 

communication due to its lower resource overhead and immense popularity when compared to 

similar protocols such as Constrained Application Protocol (CoAP) [15] and Advanced Message 

Queuing Protocol (AMQP) [16]. MQTT is even used by major cloud service providers such as 

Amazon Web Services. Our literature review has revealed that software security of MQTT-

connected devices has been scarcely explored [17], even though software vulnerabilities in 

MQTT software can affect millions of devices. 



4 

 

A relevant field to IoT is smart buildings. A smart building consists of smart devices composing 

a Building Automation System (BAS) that control and monitor building features, such as 

heating, ventilation, and air conditioning (HVAC), lighting, shading, and so forth. A BAS is 

typically deployed in commercial and industrial environments. Devices within a BAS use 

communication protocols such as BACnet [18] and KNX [19] to communicate with each other, 

and building operators use these protocols to monitor and program the devices. These protocols 

often rely partially on IP since devices may be widely distributed throughout the building (and 

sometimes multiple buildings). Thus, an adversary inside the network can perform attacks 

remotely against the BAS. On the one hand, we found that the most common BAS protocols 

often fail to implement proper network security practices, exposing them to the same attacks 

mentioned above such as spoofing attacks, data sniffing and manipulation, denial-of-service, etc. 

[20] [21] [22]. On the other hand, BAS devices are comprised of MCUs which run dedicated 

software stacks, which opens the possibility for software exploits [23] [24] [25]. 

To identify software bugs, security researchers have several techniques at their disposal, such as 

binary analysis, code review, symbolic and concolic execution, and fuzz testing (fuzzing). This 

research focuses on the latter to search for bugs in MQTT and BAS. Generally speaking, fuzzing 

consists of sending random or invalid inputs to a target at runtime and observing the results. 

Binary analysis and code review can search for bugs more thoroughly than fuzz testing, but they 

only analyze the static target and may miss some important runtime information such as dynamic 

libraries, peripheral I/O, and architecture-specific behaviors. Symbolic and concolic execution 

model a system as a set of constraints and attempt to solve those constraints; while this approach 

can reliably generate inputs for given code branches, it is not scalable due to the computational 
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complexity of satisfiability modulo theories (SMT) solvers. Furthermore, these techniques 

presume access to either the binary or source code, which is not always feasible in an IoT 

environment. Hence, we employ fuzz testing in our experiments to 1) observe accurate behavior 

from the target systems at runtime, and 2) guarantee that our models will scale well. 

A major consequence of software attacks is that sensitive data can be leaked. In IoT, this data 

might include WiFi passwords, private keys for TLS communication, unique device identifiers, 

and other types of credentials. Hence, it is important that security practices in IoT prioritize the 

protection of sensitive data. Some prominent software defenses include stack smashing 

protection, data execution prevention, and address space layout randomization (ASLR). 

However, these defenses are not always feasible in an IoT environment, their availability may 

differ from device to device, or they may be susceptible to human errors. For example, stack 

smashing protection may not be offered by all compilers, and ASLR is rarely implemented (or 

ineffective due to low entropy) in IoT devices due to the memory constraints [26].  

Instead, this research advocates the use of cryptographic coprocessors for securing sensitive data 

against software attacks. In such a coprocessor, all cryptographic operations are performed 

internally, and the private key never leaves the chip, thus providing a hardware root-of-trust. 

Depending on which cryptographic operations are offered and which types of data can be stored, 

a crypto coprocessor can enable many functions, including session key establishment and mutual 

authentication, signature generation and verification, random number generation, and even 

secure firmware booting. Moreover, crypto coprocessors have no software overhead, and 

therefore do not face the same limitations posed by the other solutions. A prominent crypto 

coprocessor referenced in this research is the ATECC608A, developed by Microchip [27].  
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1.1 Statement of Research 

This research focuses on discovering new vulnerabilities in IoT systems and devices, as well 

designing trustworthy defenses against those vulnerabilities. We specifically focus on MCU-

enabled IoT devices and IoT servers that interconnect those devices to the cloud, since this type 

of IoT system is common in many applications such as smart homes, Wireless Sensor Networks, 

and environmental monitoring. MCUs are often chosen due to their low cost, simplicity, and 

extensibility; designers may write their firmware in the C programming language, and the board 

often exposes several communication interfaces (programmable GPIOs, I2C, SPI, UART, etc.) to 

support a large variety of peripherals. We find that even industrial-grade equipment such as BAS 

devices often rely on a system-on-chip (SoC) or MCU for processing capabilities. 

A common misconception is that security and privacy requirements cannot be obtained in IoT 

due to unreasonable hardware or cost bottlenecks. Thus, our first contribution aims to disprove 

that misconception by evaluating low-cost MCUs and crypto modules that can implement 

hardware security, system/firmware security, network security, and data security. In many 

Internet-enabled applications, the TLS handshake is often a major bottleneck due to the 

computationally expensive public key cryptography; however, many devices now either offer 

internal hardware acceleration, or can be paired with an external crypto module, to minimize the 

time cost of the connection establishment. Furthermore, our experiments include evaluating 

various individual cryptographic operations such as AES encryption and decryption, HMAC, 

ECC and RSA signature operations, and MQTT connection establishment & round-trip time with 

AWS IoT Core. 
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Next, we begin to focus on the security of IoT servers, which interconnect IoT devices around 

the world. We specifically focus on MQTT servers (ñbrokersò) due to the popularity and usage 

of MQTT in major cloud service providers such as AWS. The literature has placed significant 

interest into the network security of MQTT; in particular, MQTT offers lackluster authentication 

mechanisms and no data confidentiality or integrity [28] [29] [30]. However, the software 

security of MQTT implementations has not been well explored; even perfect network security 

cannot stop an attacker if the software contains bugs. To evaluate the software security of MQTT 

servers, we design a fuzzer that is modeled using 2 Markov chains and a Bernoulli process. This 

model allows for fine-grained control over various parameters in the fuzzing session, making it 

viable for different software implementations; for instance, the model can easily be configured to 

prioritize certain MQTT packet types or certain fuzzing operations. The fuzzer, called FUME, 

monitors feedback from the server in the forms of network responses and console responses 

(stdout and stderr) to sufficiently track state coverage without the need for the code or binary. 

FUME was deployed against several popular MQTT broker implementations and discovered 6 

zero-day vulnerabilities, of which 2 resulted in CVEs. 

After presenting the vulnerabilities in IoT servers, we evaluate the software security of these IoT 

systems on the device level. Ensuring software security in these devices is a nontrivial task. On 

the surface, IoT devices face many familiar software challenges such as enforcing control flow 

integrity, preventing memory corruption, etc. However, defenses can vary greatly depending on 

the exact hardware and vulnerability. We present various use cases of software attacks against 

the ESP32 that leverage the format string attack. We show that this attack can successfully steal 

and overwrite data, hijack the control flow, and even inject code if the adversary understands the 
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architecture of the ESP32. We follow up these theoretical attacks with proof-of-concepts that 

successfully compromise two running applications without the need for physical access. 

Next, we expand our fuzzing work to target BAS hardware and software frameworks. Despite its 

apparent differences, BAS shares many similarities with the other IoT systems discussed in this 

research. For instance, BAS interconnects a network of devices through a communication 

protocol such as BACnet or KNX, similar to IoT. Smart building devices also typically rely on 

MCUs, SoCs, or microprocessors (MPUs) for processing and storage capabilities. Most 

importantly, these devices contain a software stack that can also be compromised if 

vulnerabilities are present. We expand the protocol fuzzing technique to discover vulnerabilities 

in numerous KNX and BACnet devices. By probing network packets for magic bytes, length 

fields, counter fields, and more, we can develop a greater understanding of the underlying 

protocol and being to fuzz targets more intelligently. We also target the software frameworks 

which are used for controlling and monitoring these devices. To fuzz the software, we develop a 

technique that leverages dynamic instrumentation to obtain code coverage only when the target 

is actively processing network data. 

To design a trustworthy defense against these attacks, we advocate for the use of crypto 

coprocessors to protect the userôs sensitive data. While a defense against specific software 

attacks may not be portable across different architectures, a crypto coprocessor solution is cross-

platform. Our proof-of-concept pairs the ESP32 MCU with the ATECC608A crypto 

coprocessor. We also acknowledge the need to protect crypto coprocessors against supply-chain 

attacks and malicious personnel during the key provisioning process. Thus, we propose a key 
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provisioning framework that defers the provisioning of private keys and certificates to a secure 

facility that is logically separated from the rest of the manufacturing process. 

1.2 Contributions 

This dissertation makes the following contributions: 

1 We explore the use of MCUs and cryptographic modules in IoT applications. We discuss how to 

implement hardware security, firmware security, network security, and data security in IoT and illustrate 

use cases through the popular ESP32 class of MCUs. 

2 We study the software security of popular MQTT implementations, which interconnect with IoT 

devices from the cloud. We design, implement, and evaluate a robust fuzz testing model that discovered 

6 zero-day vulnerabilities in various MQTT brokers. 

3 We demonstrate the plausibility of well-known software attacks on the ESP32. These attacks can be 

used to remotely steal private keys that are hard-coded in the firmware. 

4 We extend our fuzzing approach to BAS hardware and software and reveal numerous vulnerabilities in 

KNX and BACnet devices and tools. We discovered 11 new bugs from this research. 

5 We explore how to protect sensitive data in IoT applications through the use of crypto coprocessors. We 

present a framework for secure key provisioning that protects end usersô private keys from both 

software attacks and untrustworthy manufacturers. 
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CHAPTER 2:  HARDWARE AND COST IN IOT SECURITY AND PRIVACY  

In this Chapter, we explore the use of MCUs and crypto modules in IoT applications and 

demonstrate that hardware and cost may not be the bottleneck of IoT security and privacy in 

various application domains. We discuss how to implement hardware security, system/firmware 

security, network security, and data security in a low-cost IoT framework. We also perform 

extensive experiments to validate the performance of cryptographic and networking operations 

of IoT devices.1 

2.1 Motivation 

The popularity of IoT has raised grave concerns about security and privacy [31] [32]. When 

medical devices are connected to the Internet, compromised medical devices may endanger the 

lives of patients. Hacked autonomous cars may crash. Hackers exploited default passwords and 

usernames of webcams and other IoT devices and installed the Mirai botnet on compromised IoT 

devices [2]. The huge botnet was then used to deploy the DDoS attack against Dyn DNS servers. 

The IoT Reaper botnet was discovered in 2017 and exploited newly found vulnerable IoT 

devices [3]. 

There is a misconception that the security and privacy issues of IoT are caused by incapable 

hardware and the associated cost. For example, it is believed that it is hard to adopt secure 

hardware and achieve the desired security such as public key cryptography based mutual 

 
1 The contents of this chapter are based on our publication to IEEE ICC 2019 [6]. 
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authentication while preserving decent networking performance for smart home products. In this 

chapter, we will explore how to secure low-cost microcontrollers (MCUs) based IoT 

applications. Sensor nodes in various smart systems such as smart home, smart health and smart 

grid can use MCUs to process commands and automatic control. 

 

Figure 2.1: ESP32, CC3220 and ATECC608A microcontrollers and development boards 

The major contributions of this Chapter can be summarized as follows: 

1 First, we discuss how to implement hardware security, system/firmware security, network 

security, and data security through Espressifôs ESP32 ($3.45 at AliExpress) [33], TIôs 

CC3220SF ($6.79 at TI) [34], and Microchipôs ATECC608A ($0.55 at Microchip) [27]. 

Figure 2.1 shows these modules and the corresponding development boards. ATECC608A is 

a crypto co-processor module with AES, HMAC, and ECC (elliptic curve) hardware 
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acceleration and secure key storage capabilities; it can be used with a MCU or 

microprocessor such as ESP8266, ESP32, and CC3220SF to provide public key 

cryptography based mutual authentication and communication secrecy and integrity. 

2 Second, we perform extensive experiments to demonstrate the performance of cryptographic 

and networking operations of those and other MCUs and modules, and we show that the low-

cost MCUs and crypto chips can meet the security and privacy requirements in domains 

where MCUs are used.  

2.2 Secure MCU Based IoT System via ESP32 

In this section, we first discuss the security requirements of an IoT system, identifying the 

necessity of securing the hardware, system and firmware, data on the flash, network 

communication, and firmware updates. We then discuss how to achieve these security features 

individually on the ESP32 

2.2.1 Security Requirements of IoT Systems 

Different IoT systems have different requirements. We take an Internet enabled environmental 

monitoring system as an example to demonstrate security requirements of such an IoT system, 

and we believe other systems share similar attributes. 

Environmental sensors may monitor air, water, and soil quality in the wild and hostile field. A 

secure environmental monitoring system should have hardware security and be able to prevent 

attackers from reading and changing the data on the device, even when the attacker has physical 

access to the device. However, hardware security is a great challenge. For example, advanced 
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attackers may remove the flash of a device and manipulate the flash directly through its I/O 

interface. Therefore, the IoT device should have system and firmware security so that it can 

detect firmware changes and protect the overall system. To further protect the firmware and 

sensitive data that may be stored on the flash, we also want data security ï for example, flash and 

file encryption. 

In order to secure network traffic to and from the IoT device, we can use SSL/TLS (which we 

will refer to simply as TLS) to establish mutual authentication, message encryption, and message 

integrity between the device and a server. Mutual authentication is necessary and critical for any 

IoT system. We have explored various systems and found that those without mutual 

authentication often have various vulnerabilities [35] [36] [11] [37] [38]. Without client 

authentication, a fake client may solicit security credentials from the server or a smartphone 

application. Without server/user authentication, a fake server or a fake user can cheat on the 

clients and collect sensitive information. Certificate based mutual authentication based on public 

key cryptography is often the most feasible and simple implementation of mutual authentication. 

In TLSô certificate based mutual authentication, a client verifies the serverôs certificate and 

identity. The server performs similar operations to authenticate the client. 

Secure and efficient updating of the firmware of IoT systems is also key to the longevity of an 

IoT system, since no one can guarantee that a software has no bugs, and security and 

functionality patches are always expected. 
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2.2.2 Hardware Security: Disabling JTAG and UART 

The first step to accomplish hardware security is to disable I/O ports that may be present on the 

device. We must disable the ESP32ôs Joint Test Action Group (JTAG) and Universal 

Asynchronous Receiver/Transmitter (UART) ports, since they can lead to malicious read and 

write access. 

JTAG is an interface which provides two primary functions to the programmer. The first is 

boundary scanning, in which the programmer can test each component of the chip separately to 

verify it is connected and functioning correctly. The second function is debugging. The Open 

On-chip Debugger (OpenOCD) project is an open-source framework that supports 

communication with the JTAG interfaces of many embedded devices via the GNU Debugger 

(GDB) environment. OpenOCD supports the ESP32 JTAG chain. Programmers can use GDB to 

communicate with OpenOCD, providing complete access to the flash of the ESP32. It is possible 

to read and write to any byte of memory, including registers and instruction flow. 

To disable JTAG, the corresponding eFuse bit must be set to 1. The ESP32ôs eFuse is a 1024-bit 

partition of one-time programmable memory, separated into four 256-bit blocks. Upon 

programming a value, hardware ñfusedò are severed, and the programmed value is irreversible. 

As shown in Table 2.1, the eFuse field for disabling JTAG is named ñJTAG_DISABLEò. When 

the programmer disables JTAG, they cannot re-enable it. 

UART is an integrated circuit which allows two devices to communicate over a serial 

connection. Both devices in UART can either transmit or receive bytes of data. Using a serial 

register, UART will convert this data either from serial to parallel or vice versa, depending on 



15 

 

whether the data is being transmitted or received. Unlike JTAG, which can debug devices, 

UART is purely used for communication. 

The primary purpose of UART with respect to the ESP32 is to write the bootloader or 

application/firmware to the flash. Other possibilities with UART include monitoring output from 

the console and either reading or modifying direct memory addresses. The UART bootloader ï 

which is stored in ROM and distinct from the application bootloader ï enables read and write 

access directly to the flash, and this can be achieved by the programmer through an external 

interface called ñesptoolò. If the flash is encrypted by the encryption key stored in the eFuse 

when the programmer tries to read it, then the UART bootloader will transparently decrypt this 

content before sending the contents to the external interface. Similarly, the UART bootloader 

will  transparently encrypt data when the programmer uploads it via the external interface. 

Table 2.1: Overview of ESP32's security-related eFuse memory region. Size is in bits. 

Name Description Size 

FLASH_CRYPT_CNT Flash encryption counter 8 

FLASH_CRYPT_CONFIG Flash encryption config 4 

CONSOLE_DEBUG_DISABLE Disable ROM console 1 

AES_DONE_0 Enable secure boot 1 

JTAG_DISABLE Disable JTAG 1 

DISABLE_DL_* Disable UART in download mode 3 

BLK1 Flash encryption key 256 

BLK2 Secure boot key 256 

BLK3 Defined by application 256 

 

To disable the insecure properties of the UART bootloader, we must set three eFuse values. 

These are: 
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1. DISABLE_DL_ENCRYPT: Disables transparent flash encryption in UART bootloader 

mode. 

2. DISABLE_DL_DECRYPT: Disables transparent flash decryption in UART bootloader 

mode. 

3. DISABLE_DL_CACHE: Completely disables the memory management unitôs (MMU) 

flash cache while in UART bootloader mode. This step is necessary, as the MMU flash 

cache unconditionally applies encryption and decryption to all data, regardless of the 

status of the other two eFuses. 

After these eFuses are set, the programmer cannot decrypt the flash contents or write new 

contents without access to the flash encryption key. If the programmer tries to use the UART 

bootloader to read data, it will find that everything is encrypted. Similarly, if the programmer 

attempts to write plaintext data, then the new data will not function correctly, since the flash 

controller and flash cache will transparently ñdecryptò the data before it reaches the CPU, 

effectively corrupting it. Malicious users cannot override the encryption properties of the flash, 

since they are set and enforced by the hardware. 

2.2.3 System and Firmware Security 

The ESP32 offers two main features to secure the system and flash firmware from unauthorized 

access. These are hardware-based secure key storage and secure booting of the firmware. Secure 

key storage protects secret keys from being externally revealed or modified. Secure boot requires 

all firmware to be signed and verified before executing on the device. The details of both 

features are discussed below. 



17 

 

Secure Key Storage. To guarantee that an IoT system is secure, it is not enough to simply 

encrypt the data. We must also securely store the encryption key, so that only trusted systems can 

access it when needed, and even a software malware that hacks into the system cannot access the 

keys. 

The ESP32ôs eFuse allows for secure key storage. Recall this eFuse contains four 256-bit blocks. 

Block 0 is reserved for the MAC address, SPI configuration, and related security settings. Blocks 

1 and 2 are actually used for key storage ï block 1 stores the flash encryption key, while block 2 

stores the secure boot key. Both keys are 256 bits and generated using an external random 

number generation (RNG) hardware accelerated algorithm. Block 3 can be defined by the 

programmer to store application-specific keys. 

The eFuse contains several important hardware-enforced characteristics which make it secure. 

The first is that each value cannot be reversed or lowered. For example, once the 

ñJTAG_DISABLEò value is set from 0 to 1, then this value cannot be changed back to 0, 

meaning that JTAG is permanently disabled on the chip. The second characteristic is the ability 

to remove read and write access from eFuse values. When setting blocks 1 and 2, the chip will 

preemptively set two bits per block that correspond to read and write prevention, effectively 

disabling these features. Since the eFuse is stored in hardware, an attacker cannot use UART, 

JTAG, or other means of communication to reveal the contents of the eFuse. 

Secure Boot. Secure boot is a feature which ensures that all software running in flash must be 

signed by a known trusted entity. If either the software bootloader or the application firmware 

are modified, the device will refuse to boot. 
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Once properly configured, two keys are necessary to enable secure boot. The first key is a 256-

bit bootloader key, generated with internal RNG functions and stored in eFuse block 2. This key 

allows the ROM bootloader to validate the application bootloader. The second key is the secure 

boot signing key, generated using ECDSA with the NIST256p curve. The manufacturer will 

generate the ECDSA keypair on their own system. The signing key is used to generate image 

signatures, so it must be available to the manufacturer. The software bootloader and the 

application are validated via a chain-of-trust model, as detailed below. 

¶ After secure boot is first enabled, the ESP32 hardware uses the key in stored in eFuse block 2  

to generate a digest of the application bootloaderôs contents. To generate the digest, first the 

hardware encrypts the bootloader contents uses AES-256 in ECB mode and the secure 

bootloader key. Then SHA-512 is calculated over the ciphertext to obtain the final digest. 

The digest is stored at address 0x0 in the flash. The application bootloader is stored at 

address 0x1000. Now the application bootloader uses the public key component of the 

ECDSA keypair to verify the firmware image. This means all firmware images must be 

signed by the secure boot signing key. If the firmware is verified, then the application 

bootloader loads the firmware image and runs the application. 

¶ If the ESP32 is reset, the ROM bootloader verifies the integrity of the application bootloader 

by re-calculating the digest and comparing it to the stored digest. The ROM bootloader will 

load the application bootloader only if the digest match. The application bootloader will 

again use the ECDSA public key to verify the firmware before loading and executing it. 
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2.2.4 Data Security 

The ESP32 has the ability to encrypt applications and firmware using a secure AES-256 key. 

This procedure is known as flash encryption. The AES key is stored in block 1 of the eFuse; 

once written to the eFuse, the read and write bits for the key are set to prevent anyone from 

reading or modifying the key. 

When flash encryption is enabled, application-specific flash partitions, such as factory and over-

the-air (OTA) update partitions, are encrypted by default. From there, decryption can only occur 

at runtime via the flash controller or flash cache. The flash controller is a hardware component 

that uses the AES key to perform the following operations:  

1) Decryption of memory-mapped read accesses to flash, 

2) Encryption of memory-mapped write accesses to flash. 

It is also possible to encrypt other flash partitions by manually setting an ñencryptò flash for a 

partition. This requires generating a custom partition table rather than using the default table 

(which only encrypts factory and OTA partitions). All partitions have the option for their content 

to be encrypted, with the exception of non-volatile storage (NVS), which persists through the 

power cycle. However, it is desirable to encrypt NVS contents, which may store sensitive data 

such as WiFi credentials. 

Although we cannot secure the NVS partition directly using flash encryption, we can still 

encrypt the partition through other means. We can create a new NVS key partition called 

ñnvs_keyò, generate a new AES-256 secret key, and store the key in this partition. We can mark 

this partition with the ñencryptò flag so that the key is encrypted with the primary flash 
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encryption key. Afterwards, when the ESP32 detects read or write requests to the NVS partition, 

it will transparently encrypt or decrypt these requests using AES in XTS mode and the NVS key. 

These requests are only available from the ESP32ôs NVS API library, so they cannot be 

exploited from outside the device. 

2.2.5 Network Security 

The challenge to implement TLS on an IoT device is often the cost and efficiency of 

implementing the public key based cryptographic functionalities. As shown in this chapter, the 

hardware and cost may no longer be the bottleneck. The ESP32 has cryptographic hardware 

acceleration for RSA and random number generation (RNG), while ECC hardware acceleration 

is limited based on our experiments. Our extensive experiments show that the performance of 

TLS is satisfactory in various application domains. The ESP32 also has cryptographic hardware 

acceleration for AES and SHA-2 in addition to RSA and RNG so that TLS can be fully 

implemented. Therefore, AES encryption can be implemented for communication secrecy, and 

HMAC will achieve communication integrity. 

2.2.6 Secure Over-the-Air Updates (OTA) 

OTA is a process in which the MCU fetches a new image from a remote location, stores this 

image in the flash, and loads on successive reboots. OTA updates are seamless and transparent, 

and many devices can be updated concurrently. The drawbacks are that wireless updates 

introduce additional attack vectors that must be avoided. The ESP32 offers native library support 

for OTA updates over HTTPS. For example, a partition table may include multiple OTA 
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partitions which store potential firmware for the ESP32. A separate partition called ñotadataò can 

store a pointer to the newest firmware, i.e., the correct OTA partition. Upon downloading a new 

update, the unused firmware will be overridden, leaving the current firmware untouched. If the 

update fails, the device simply reverts to the previous application. If the update succeeds, the 

ñotadataò partition updates to point to the new OTA partition, and the system reboots to execute 

the new firmware. 

2.3 Discussion 

In this section, we first discuss the security differences between the ESP32 and the Texas 

Instruments (TI) CC3220SF MCU (denoted as CC3220 thereafter) in terms of hardware security, 

system and firmware security, network security, and data security. The features of the CC3220 

are technologically similar to the ESP32. We will then discuss the use of low-cost cryptographic 

co-processors for IoT security and privacy. 

2.3.1 Differences from TI CC3220 

The CC3220 contains two separate execution environments, an ARM Cortex-M4 MCU (180 

MHz) for user applications, and a network processor MCU for network-related tasks. The ESP32 

contains two Xtensa LX6 cores (240 MHz), allowing for preemptive context-switching and user-

specified processor workloads. 

Hardware Security. Both the ESP32 and the CC3220 contain external UART and JTAG ports 

for communication and debugging. CC3220 additionally has compact JTAG (CJTAG) and serial 

wire debug (SWD) ports for alternative debugging methods. Both chips can be configured to 
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disable these debug interfaces. The CC3220 supports two application environments: 

development mode and production mode. Users can select their preferred environment using the 

TI Uniflash standalone flash tool. In development mode, JTAG and other debugging interfaces 

are exposed, and the user can navigate and modify the device file system using Uniflash. In 

production mode, the user cannot use Uniflash to access the file system. Furthermore, hardware-

enforced file encryption limits the capabilities of UART in production mode. 

System/Firmware Security. TI encourages CC3220 users to use the TI-Real Time Operating 

System (TI-RTOS). This OS utilizes a file system model to organize image contents and 

metadata. Both ESP32 and CC3220 can run any SoC-level OS, such as FreeRTOS and 

Mongoose OS. 

Both devices support similar functions with regards to secure key storage. The ESP32 can store 

three private keys in the eFuse. Additionally, users can generate an ñnvs_keyò partition in the 

ESP32 to store encryption keys, which will transparently encrypt and decrypt data in the NVS 

partition. Finally, the ESP32 can generate temporary AES, DES, RSA and ECC keys using the 

mbedtls library. 

By comparison, the CC3220 can store up to eight different private keys. Keys must be generated 

using ECDH with the SECP256R1 curve, with the exception of the device-unique keys. Secure 

key storage is available in three different forms for the CC3220: hardware-bound device-unique 

private keys, temporary keypairs, and pre-installed keypairs. There are two device-unique keys 

on the CC3220. The first is a 128-bit key that encrypts the file system using AES-128-CTR. The 

second is a 256-bit keypair that can be used to sign and verify various data buffers; this can be 
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used to implement secure content delivery, mutual authentication during the TLS handshake, and 

various other features. Temporary keypairs can be generated using the device $TRNG$ (true 

random) library; these will not persist through the power cycle. Finally, pre-installed keypairs 

must be generated outside of the CC3220 and flashed to the device before uploading the main 

application code. From there, only the public keys are retrievable, while the private keys are 

protected by hardware. 

The CC3220 also provides secure boot functionality. When first booting the application onto the 

chip, the user must present a valid RSA certificate signed by a trusted CA. This certificate is 

used to prove authenticity during subsequent flashes. The user signs the image using the RSA 

private key. The bootloader then stores the corresponding public key, which is used to verify the 

image. Finally, the bootloader hashes the image binary and stores this in a secure file. 

Upon repeated boots, if the user decides to reflash the same image, then they will need to present 

a valid certificate to authenticate with the device. The bootloader will confirm that the image 

signature is valid and the hashes match, and the program will execute as normal. If the 

authenticated user decides to reflash a new image and signs with the private key, then the 

bootloader will verify the signature, hash and store the new image binary, and execute the new 

image. In this way, the ROM bootloader serves as the root of trust for applications in the 

CC3220, similar to the ESP32. 

The CC3220 secure boot approach differs from the ESP32 in several ways. For one, the CC3220 

only verifies the run time binary and the associated files, whereas the ESP32 verifies the binary, 

software bootloader, and all other flash partitions, with the exception of NVS. Second, secure 
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boot is enabled by default for the CC3220 (in production mode), whereas it is optional and 

disabled by default for the ESP32. 

Network security. The ESP32 and CC3220 have similar network security features. In our 

observations, we found very few technical differences in the most critical areas of network 

security, although network performance has been shown to differ in our evaluation. 

The ESP32 and CC3220 fully support the SSL/TLS protocol, enabling mutual authentication, 

message encryption, and message integrity. Both the ESP32 and CC3220 can generate X.509 

certificates using ECC or RSA certificates. In addition, the ESP32 and CC3220 both support 

HTTP, MQTT, and HTTP/MQTT over SSL. Either HTTP/S or MQTT over SSL is sufficient for 

secure communication with a server. 

Both devices support WiFi (802.11 b/g/n) and Bluetooth Low Energy (BLE version 4.2). In 

addition to serving as an open access point (WEP and WPA), both devices can connect to 

personal and enterprise WPA2 networks. If an enterprise network is to be connected, the network 

CA certificate must be manually imported onto the device. The CC3220 can also communicate 

using Zigbee, a close-ranged communication technology; Zigbee is unsupported by the ESP32. 

Data Security. The ESP32 and CC3220 both support some form of flash encryption. The ESP32 

can encrypt all of its flash contents using a hardware-stored AES key. Meanwhile, the CC3220 

organizes most of its user-defined code in a file system, which is also encrypted with a hardware-

bound AES key. TI refers to this protection mechanism as ''cloning detection", because only the 

original boot device has authorization to decrypt the file system. Both chips also support 

temporary and persistent key generation. 
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The CC3220 implements a file permission mechanism known as data tampering detection. Users 

can designate and label critical files in their applications. The file metadata will denote them as 

ñsecureò files. Upon a secure file creation, the system will generate several different 32-bit 

access tokens for read, modify or delete; each token provides a different access level for the file. 

This feature, coupled with the file system encryption, prevents attackers from stealing sensitive 

data even if they have full control of the device. 

Both devices incorporate external hardware accelerators for a variety of cryptographic 

algorithms. The ESP32 supports hardware acceleration for RSA, AES, SHA-2, and RNG. The 

CC3220, meanwhile, supports hardware acceleration for AES, DES, 3DES, SHA-2, MD5, CRC, 

and checksums. In section 2.4, we compute and compare different procedures on data using 

AES, HMAC, ECC, and TLS. 

2.3.2 Microchip ATECC608A 

An old MCU may not have modern support of secure boot, flash/file encryption and hardware 

cryptographic acceleration. However, solutions are available to secure those MCUs and other 

processors. One example is Microchip's ATECC608A, which is a cryptographic co-processor 

with secure hardware-based key storage. It can store 16 keys, and supports ECDSA/ECDH, 

SHA-256 & HMAC, AES-128 and other features. Communicating with ATECC608A is done 

through either a GPIO (general-purpose input/output) pin or a standard Inter-Integrated Circuit 

(I2C) interface, which is a widely supported serial protocol. The ATECC608A incorporates the 

functions of two older chips: ATECC508A (ECC+HMAC) and ATAES132A (AES). We will 

also investigate the performance of the ATAES132A in our evaluation. 
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2.4 Evaluation 

In this Section, we present the results of evaluating the ESP32, ESP8266 (the predecessor to 

ESP32), CC3220, and Microchip's ATAES132A, ATECC508A, and ATECC608A (denoted as 

AES132, ECC508 and ECC608 thereafter). 

2.4.1 Experimental Setup 

We evaluate the following metrics: AES key generation, encryption, and decryption; ECC 

keypair generation, signature generation, and signature verification; HMAC computation; RSA 

keypair generation, signature generation, and signature verification; MQTT over SSL connection 

establishment and round-trip time (RTT) delay. MQTT is a lightweight IoT protocol so that 

devices and controllers can exchange messages through a broker/server. 

Figure 2.1 shows some of the development boards we use to program those modules. Note that 

the development board is a device that contains a chip such as the ESP32 and is used to evaluate 

the chip. For the ESP32, we use the HiLetgo ESP32 OLED WiFi Kit ($18.99 at Amazon) while 

one without the OLED display costs around $10.99 at Amazon and around $5 at AliExpress. The 

programming environment is Espressif IoT Development Framework (ESP-IDF), Arduino 

integrated development environment (IDE), or the Mongoose OS firmware development 

framework. For ESP8266, we use a NodeMCU development board (around $6.50 at Amazon). 

We program in Mongoose, running ESP8266 at 160MHz. For CC3220, we use TI's CC3220SF-

LAUNCHXL development board ($49.99 at TI) and run at 180 MHz. The programming 

environment is the Code Composer Studio (CCS) IDE. For ECC608, we use Microchip's Crypto 
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Kit UDFN Socketed XPRO Development Board ($85 at Microchip). The programming 

environment for the AES132 and ECC608 is Atmel Studio 7; additionally, these crypto chips can 

be programmed through the ESP32 or ESP8266. 

2.4.2 Summary of Measurement Results 

Table 2.2 shows the median of each operation. All metrics were performed 100 times on each 

chip. RSA is only implemented on the ESP32 to compare with ECC performance; this is due to 

the time cost of RSA keypair generation, which requires significantly large keys (2048 bits or 

more) for sufficient protection. Key generation is performed externally in the case of the 

Microchip MCUs involved. We can see that these results are satisfactory in various IoT settings. 

For example, the round-trip time of a short message between our devices and AWS IoT Core 

through the TLS tunnel has a median of less than 50 ms. Although the TLS connection 

establishment to the AWS IoT takes a median of 2.30 seconds for ESP32 and 0.699 seconds for 

CC3220, it is acceptable since the TLS connection can be reused and does not need to go through 

the full handshake protocol. For example, AWS IoT Core uses persistent TLS connections. 
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Table 2.2: Summary of cryptographic metrics for ESP32, CC3220, AES132A, ESP8266, and 

ECC608. Unit ɛs. 

Evaluation ESP32 

(240 

MHz) 

CC3220 

(180 

MHz) 

AES132A ESP8266 

(160 

MHz) 

ECC608 

Standalone 

ESP32 

with 

ECC608 

ESP8266 

with 

ECC608 

AES 

encryption 

4.05 38.8 10.0 * 103 153 6.10 * 103 N/A N/A 

AES 

decryption 

4.12 39.5 10.0 * 103 145 6.70 * 103 N/A N/A 

HMAC 154 45.1 N/A 182 25.9 * 103 N/A N/A 

ECC 

signature 

generation 

9.29 * 

104 

3.87 * 

105 

N/A 2.48 * 

105 

90.2 * 103 N/A N/A 

ECC 

signature 

verification 

3.32 * 

105 

7.09 * 

105 

N/A 6.97 * 

103 

45.1 * 103 N/A N/A 

RSA 

signature 

generation 

159 N?A N/A N/A N/A N/A N/A 

RSA 

signature 

verification 

2.27 * 

103 

N/A N/A N/A N/A N/A N/A 

MQTT 

connection 

establishment 

3.20 * 

106 

6.99 * 

105 

N/A 2.85 * 

106 

N/A 1.10 * 

106 

1.40 * 

106 

MQTT 

round-trip 

time 

3.99 * 

104 

4.79 * 

104 

N/A 8.32 * 

104 

N/A 5.90 * 

104 

5.22 * 

104 

 

2.4.3 AES, HMAC, ECC, and RSA 

We now show the box plots of these measurements. We first show the performance of AES key 

generation, encryption, and decryption. Figure 2.2 and Figure 2.3 showcase these results, 

respectively. We use a key size of 256 bits and cipher block chain (CBC), except in the cases of 

the ESP8266 and AES132. The input data size is 128 bits. ESP8266 only implements 128-bit 

AES operations due to RAM constraints, while the AES132 is restricted to the 128-bit key size 
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in Counter with CBC-MAC (CCM) mode. For all other chips, we choose to measure AES-256 in 

CBC mode because it is the same algorithm used to encrypt the flash contents on the ESP32. 

 

Figure 2.2: Time to perform AES 256-bit key generation 

For AES key generation, CC3220 performed approximately 226 µs faster than ESP32. For AES 

encryption and decryption, ESP32 performed faster than CC3220 and ESP8266 by a large 

margin. AES132A and ECC608 showed the worst performance around 10 ms for encryption and 

decryption. Encryption and Decryption operations performed considerably faster than key 

generation. 
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Figure 2.3: Time to perform AES encryption and decryption on 128-bit data 

Next, we measure HMAC, whose results can be seen in Figure 2.4. For ESP32, CC3220, and 

ESP8266, we use a key size of 112 bits, while the ECC608 uses a 256-bit key size due to 

hardware restrictions. All chips use the SHA-256 hash function. The final HMAC is 256 bits. 

Our tests indicate that ESP32 executes HMAC slower than CC3220 by approximately 100 µs. 

CC3220 showed the strongest performance at only 45.1 µs. The ECC608 performed the worst at 

25.9 ms. Similar to AES, all metrics, except the ECC608, are on the order of µs, likely due to 

SHA-2 hardware acceleration. 
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Figure 2.4: Time to perform HMAC-SHA256 with input size 120 bits and key size 112 bits. 

For ECC, we first use ECDH (Elliptic Curve Diffie-Hellman), followed by ECDSA (Elliptic 

Curve Digital Signature Algorithm) to generate and verify the digital signature. We use the 

SECP256R1 curve and a 256-bit sized key. ECC is particularly advantageous over RSA in terms 

of speed and key size. The results of ECC performance on the MCUs can be observed in Figure 

2.5 and Figure 2.6. ESP32 outperformed the CC3220 in all three benchmarks. 
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Figure 2.5: Time to perform ECC 256-bit key generation using SECP256R1 

The ESP8266 showcased a median run time of approximately 0.25 seconds for signature 

generation and 0.07 seconds for verification. It is observed that ECC operations are several 

orders of magnitude slower than AES and HMAC. This behavior is expected and well-

documented. 



33 

 

 

Figure 2.6: Time to perform ECC signature generation and verification. 

Next, we examine the performance of RSA with a 1024-bit key. We only focus on the 

performance of ESP32, to compare with ECC. Software-based RSA keypair generation would 

predictably run poorly on MCUs, due to the large key size. Even our 1024-bit key size, which is 

below NIST's recommended minimum key size of 2048 bits, is very time-consuming. 

Furthermore, the other chips in our evaluation do not appear to support RSA hardware 

acceleration; thus, we refrain from measuring their RSA performance. 
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Figure 2.7: Time to perform ECC 256-bit key generation versus RSA 1024-bit key generation 

Figure 2.7 and Figure 2.8 plot the results of RSA key generation, signature generation, and 

signature verification on the ESP32, in comparison to ECC. We continue to use the SHA-256 

hash function for consistency with ECC. RSA key generation variance was significant. ECC key 

generation performed faster and more consistently; however, RSA signature operations fared 

much better than ECC due to hardware acceleration. As expected, all operations fell on the order 

of seconds, with key generation performing at least ten times slower than signature operations in 

most cases. 
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Figure 2.8: Time to perform ECC and RSA signature generation and verification 

2.4.4 MQTT 

In our setup, we use the Amazon AWS IoT broker in the North Virginia region to measure 

MQTT connection establishment and round-trip delay. We publish messages with a quality of 

service (QoS) level of 1, ensuring that AWS will acknowledge our messages by responding with 

PUBACK message packets. The run times for ESP32, ESP8266, and CC3220 can be seen in 

Figure 2.9 and Figure 2.10. We also measure performance of these chips when leveraging the 

ECC608's hardware acceleration. 
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Figure 2.9: Time to establish a TLS session with AWS IoT Core 

For connection establishment time, CC3220 outpaced the ESP32 and ESP8266. The CC3220 

performed over three times faster than the ESP32 and over four times faster than the ESP8266. 

Without crypto acceleration, the ESP32 took approximately 2.3 seconds, while the ESP8266 

took about 2.85 seconds. The ECC608 performed at 1.1 seconds and 1.4 seconds, respectively. It 

is shown that on the tested chips, connection establishment time can take as little as one quarter 

of a second, although network lag can throttle performance by a considerable margin. 
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Figure 2.10: Round-trip delay of MQTT packets between the device and AWS IoT Core 

On the whole, the ESP32 showed the best performance for round-trip MQTT delay. The 

ESP8266 performed slightly worse than the other chips, and ECC608 did not appear to 

significantly impact the ESP32 or ESP8266 run times. Round-trip delay is predictably faster than 

connection establishment time, which is ideal for persistent TLS connections. 

2.5 Conclusion 

In this Chapter, we study modern MCUs and crypto co-processors including Espressif's ESP32, 

TI's CC3220 and Microchip's ATECC608A in terms of their cryptographic and networking 

operation performance. It can be observed that these MCUs and modules can provide satisfactory 

hardware security by disabling the I/O interfaces, system/firmware security through secure boot, 

network security through SSL/TLS (including mutual authentication that is required by Amazon 
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AWS IoT), and data security through flash/file encryption and Over-the-Air (OTA) firmware 

upgrade through wireless or HTTPS. The very low cost ATECC608A can be added to various 

MCUs and microprocessors as a crypto co-processor to secure the overall IoT system and meet 

the performance requirements of networking. 
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CHAPTER 3:  DISCOVERING VULNERABILITIES IN  IOT SERVERS 

In this Chapter, we explore vulnerabilities in IoT servers, which directly impact a large number 

of IoT devices. As a case study, we investigate the software security of MQTT, a popular 

communication protocol used by millions of devices worldwide. The software security of MQTT 

server (ñbrokerò) implementations is not well studied. Therefore, we design, implement, and 

evaluate a novel fuzz testing model for MQTT. The fuzzer combines aspects of mutation guided 

fuzzing and generation guided fuzzing to rigorously exhaust the MQTT protocol and identify 

vulnerabilities in servers. We introduce Markov chains for mutation guided fuzzing and 

generation guided fuzzing that model the fuzzing engine according to a finite Bernoulli process. 

We implement ñresponse feedbackò, a novel technique which monitors network and console 

activity to learn which inputs trigger new responses from the broker. In total, we found 7 major 

vulnerabilities across 9 different MQTT implementations, including 6 zero-day vulnerabilities 

and 2 CVEs. We show that when fuzzing these popular MQTT targets, our fuzzer compares 

favorably with other state-of-the-art fuzzing frameworks, such as BooFuzz and AFLNet.2 

3.1 Motivation 

MQTT is used many devices across the world [39], and it is estimated that 62% of all IoT 

solutions use MQTT [40]. It is often considered the ñde-facto standardò for Internet of Things 

(IoT) communication due to its low overhead and immense popularity when compared to similar 

protocols such as CoAP [15] and AMQP [16]. Many implementations of MQTT have been 

 
2 The contents of this Chapter based on our publication to IEEE INFOCOM 2022 [107]. 
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developed since its inception, including software libraries for clients and servers on a range of 

hardware, Operating Systems, and cloud platforms [41]. Brokers may serve thousands of unique 

clients at any given time. 

MQTT security ï in particular, the software security of broker/server implementations ï has 

received little attention in the literature. Most works only focus on the lack of network security 

mechanisms in MQTT, such as authentication, access control, encryption, and integrity checking 

[41] [28] [29] [30]. On the other hand, software vulnerabilities of brokers are not nearly as 

represented in the literature. To our best knowledge, we observed only a single example which 

performs a comprehensive assessment of MQTT software security from the perspective of 

brokers [17]. Based on this research gap, we believe there is an urgent need to investigate the 

software security of MQTT brokers. 

One of the most prominent methods for software vulnerability discovery is fuzz testing, or 

simply fuzzing [42]. A fuzzing software (ñfuzzerò) will generate pseudo-random or invalid test 

cases which are then sent to the target application. The fuzzer then observes the application 

behavior. Popular fuzzing frameworks for network applications include BooFuzz [43], Spike 

[44], and AFLNet [45]. In the context to IoT security, IoTFuzzer is a blackbox fuzzing model 

that performs dynamic analysis of mobile apps to learn how to communicate with remote IoT 

devices [12]. The model can achieve protocol guided fuzzing without intimate knowledge of the 

protocol itself. However, IoTFuzzer only targets software vulnerabilities in network clients. 
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In this paper, we develop a novel fuzzing model for MQTT brokers, called FUME. This fuzzer 

implements mutation guided and generation guided fuzzing techniques according to Markov 

models, which describe the state of each fuzzing iteration independently from past iterations.  

We show that each Markov model can be described as a finite Bernoulli process, since each 

direct transition can be considered a Bernoulli trial with a probability of transitioning to the next 

state, independent from other state transitions. We also implement ñresponse feedback,ò a 

technique where the fuzzer can listen to network activity and console output (i.e., stdout, stderr, 

or log files) from the broker. Inputs which trigger unique responses from the broker are saved 

and tested later. FUME requires no source code and does not need to run on the same system as 

the target broker. In total, we discovered 7 major vulnerabilities across 9 different broker 

implementations, including 6 0-day vulnerabilities. Among these vulnerabilities are 2 CVEs in 

Mosquitto [46], a very popular open-source MQTT platform developed by the Eclipse 

Foundation. 

The major contributions of this Chapter can be summarized as follows: 

¶ We discuss the principles of fuzz testing in terms of Markov modeling. Namely, we design 2 

Markov chains and derive a Bernoulli for modeling a mutation guided fuzzer and generation 

guided fuzzer. 

¶ We present FUME, a novel fuzzer that targets MQTT brokers. The fuzzer implements the 

aforementioned Markov models and leverages response feedback to dynamically select more 

intelligent inputs for mutation. 
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¶ We evaluate FUME against 9 different MQTT broker implementations. We discovered 7 

major bugs, include 6 zero-day vulnerabilities, and we generated 2 CVEs. We show that our 

fuzzer can detect these bugs favorably when compared to other state-of-the-art fuzzing 

frameworks. 

3.2 Background 

In this Section, we introduce the MQTT protocol and the principles of fuzz testing to the reader. 

3.2.1 MQTT 

MQTT is a lightweight communication protocol that is published under the open OASIS 

standard ISO/IEC 20922. It was designed to meet the networking requirements of resource 

constrained devices, such as embedded systems and IoT devices. MQTT typically runs over 

TCP, TLS, or WebSocket. In MQTT, clients connect to a central broker and can either publish 

messages or subscribe to topics. When a client publishes a message, it specifies a topic filter, and 

the broker must forward these messages to any clients which have subscribed to the same topic 

filter. The broker facilitates all communication between clients, addresses session requirements, 

and authenticates clients. MQTT versions 3 and 3.1 only support password-based authentication, 

while version 5 supports the AUTH packet that can carry user-defined authentication data. Other 

security requirements such as confidentiality and integrity must be implemented by the 

application. 

MQTT supports 15 different packet types called control packets. These include CONNECT; 

CONNACK; PUBLISH; PUBACK; PUBREC; PUBREL; PUBCOMP; SUBSCRIBE; 
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SUBACK; UNSUBSCRIBE; UNSUBACK; PINGREQ; PINGRESP; DISCONNECT; and 

AUTH. All MQTT packets contain the same general structure, which is illustrated in Figure 3.1. 

Namely, each packet begins with a fixed header, which identifies the control packet type and 

specifies the length of the packet; a variable header, which lists some features of the packet; and 

the payload, which contains the payload of the message. 

 

Figure 3.1: MQTT packet structure. The ñPropertiesò field only exists in MQTT version 5. The 

ñWill Propertiesò field only exists in CONNECT packets in MQTT version 5. 

Depending on the control packet type, the variable header and the payload may be optional or 

required, while the fixed header is always required. Version 5 of MQTT also supports a 

properties sub-header, containing a list of optional properties. The properties sub-header exists at 

the end of the variable header. The CONNECT packet may also specify a will topic and a will 

payload. This payload is published to all subscribers of the will topic if the client ever 

disconnects unexpectedly ï e.g., the client did not send the DISCONNECT packet before closing 

the connection. In MQTT version 5, the will information includes a will properties field within 

the CONNECT payload. The name, identifier, and purpose of each control packet is shown in 

Table 3.1. 
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Table 3.1: Summary of MQTT control packets. The AUTH packet is only available in MQTT 

version 5. 

Name Identifier Purpose 

CONNECT 0001 Request to connect to the broker 

CONNACK 0010 Acknowledge the CONNECT 

PUBLISH 0011 Send a message to subscribed clients 

PUBACK 0100 Acknowledge the PUBLISH (QoS 1) 

PUBREC 0101 Acknowledge the PUBLISH (QoS 2) 

PUBREL 0110 Acknowledge the PUBREC (QoS 2) 

PUBCOMP 0111 Acknowledge the PUBREL (QoS 2) 

SUBSCRIBE 1000 Request to subscribe to a topic filter 

SUBACK 1001 Acknowledge the SUBSCRIBE 

UNSUBSCRIBE 1010 Stop listening to a topic filter 

UNSUBACK 1011 Acknowledge the UNSUBSCRIBE 

PINGREQ 1100 Ping the broker 

PINGRESP 1101 Acknowledge the PING 

DISCONNECT 1110 Request to disconnect 

AUTH 1111 Exchange authentication data 

 

3.2.2 Fuzz Testing 

To discover vulnerabilities in software, a fuzzer will generate pseudo-random or invalid test 

cases which are then sent to the target application; the fuzzer then observes the application 

behavior. If the application exhibits odd behavior, or crashes, then it is highly possible that a new 

vulnerability has been discovered; the researcher can then investigate this vulnerability more 

deeply. Fuzzers can be classified according to three factors: fuzzing method, target knowledge, 

and vulnerability detection capabilities. 

Fuzzing Method. There are two primary fuzzing methods: generation-guided fuzzing and 

mutation-guided fuzzing. In generation-guided fuzzing, data is generated randomly or from a 

user-defined model; for example, in protocol-guided fuzzing, data is generated according to the 

protocol structure. This fuzzing method is appropriate when the user has a complete 
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understanding of the syntax and semantics of the target protocol. In mutation-guided fuzzing, 

payloads are sampled from a corpus of valid data inputs and fuzzed. This is appropriate when the 

fuzzer tracks the state space of the target and logs inputs when the target reaches new states. 

Furthermore, mutation-guided fuzzing may be useful if the target protocol is not well 

understood, or if the protocol implementation differs from the specification. Another method, 

genetic fuzzing, may use either fuzzing method and apply genetic algorithms based on behavior 

exhibited from the target. 

Target Knowledge. Depending on the knowledge of the target, a fuzzer might be classified as a 

blackbox fuzzer, a whitebox fuzzer, or a greybox fuzzer. A blackbox fuzzer has no knowledge of 

the target specification and can only see what is directly observable. A whitebox fuzzer is 

completely aware of the targetôs internal structure and may have access to its source code and 

specification. A greybox fuzzer has some knowledge of the specification and may use 

instrumentation or dynamic taint analysis to track the targetôs control flow and state space. 

Vulnerability Detection Capabilities. To detect vulnerabilities in targets, a fuzzer may employ 

several techniques. For instance, the target may send an unexpected or malformed response, 

which can indicate a logical bug [12] [47]. The target may also hang, i.e., the connection will 

remain open but the target never sends a response [48]. Finally, the target may crash and close 

the connection; this behavior is almost universally observed by all fuzz testing frameworks [43] 

[12] [47] [48] [49] [50]. A program crash may indicate a severe vulnerability such as memory 

corruption, which can be further exploited and potentially lead to compromise of the host system. 
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3.3 Fuzz Testing Using Markov Modeling 

In this Section, we introduce the principles of mutation-guided fuzzing and generation-guided 

fuzzing in terms of two Markov models. We show that the models implement a finite Bernoulli 

process which describes the probabilistic behavior of input generation and payload fuzzing. We 

refer to the implementation of these models as the ñmutation guided fuzzing engineò and 

ñgeneration guided fuzzing engineò. The models are illustrated by Figure 3.2. 

 

Figure 3.2: Markov chains for describing mutation guided fuzzing and generation guided 

fuzzing. 

3.3.1 Mutation Guided Fuzzing 

The mutation guided fuzzing engine depends on the existence of an input corpus of semantically 

valid test cases. This engine can be broken down into two distinct phases: a construction phase 

and a fuzzing phase. In the construction phase, new packets are appended from the input corpus 

to the payload. In the fuzzing phase, the fuzzing engine can manipulate the payload using the 

byte-granular methods of injection, deletion, and mutation. The effects of these methods are as 
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follows: Injection inserts new bytes into the payload; Deletion removes bytes from the payload; 

and Mutation changes the value of some bytes in the payload. Figure 3.3 illustrates the principle 

of each method using an MQTT SUBACK control packet with value 9003b80f07. 

 

Figure 3.3: Distinct payload manipulation methods described by FUME. The fuzzer can inject, 

delete, or mutate bytes in the payload. 

The mutation guided fuzzing procedure can be modeled by a Markov chain, which is illustrated 

in Figure 3.2 (left). The model describes a single iteration of the fuzzing engine. The nodes 

represent states in the fuzzing engine, and the arcs represent probabilistic transitions; the 

transition probabilities are labeled next to their corresponding transitions. State S0 represents the 

initial state of the fuzzing engine. State S1 represents the construction phase. State S2 represents 

the fuzzing phase. Finally, state Sf is the final state and concludes the current iteration of the 

fuzzing engine. 

In the initial state S0, the fuzzing engine may either transition to the construction phase, or it may 

select a payload from the response log. The response log is explained further in Section 3.4.2; 

broadly speaking, it describes the set of test cases which have been added to the input corpus, 



48 

 

i.e., those test cases which were not part of the original input corpus. The probability of selecting 

from the response log is b. 

In the construction phase, the fuzzing engine randomly selects control packets from the input 

corpus. The probability of selecting CONNECT is c1, CONNACK is c2, etc. The sum of these 

probabilities is 1, i.e., 

ὧ ρ 

While the fuzzing engine is in state S1, it has a X1 probability of directly transitioning to state S2, 

i.e., the fuzzing phase, and a 1 - X1 probability of selecting a new packet to append to the 

payload. In the model, appending a new packet is represented by the states Add CONNECT, Add 

CONNACK, and so forth. Based on the packet selection probabilities ci | i  ɴ(1, 2, ..., 14, 15) and 

the probability of appending a new packet 1 - X1, the overall probability of adding a specific 

packet is ci - ciX1 | i ɴ  (1, 2, ..., 14, 15). 

In the fuzzing phase, the fuzzing engine can either transition to the Inject state, Delete state, or 

Mutate state, or it can transition to a Send state, which sends the fuzzed payload to the broker. 

The Inject state can transition to a BOF state or a Non-BOF state. In the former state, many bytes 

are inserted into the payload in an attempt to trigger a buffer overflow attack. In the latter state, 

the fuzzing engine only injects a small number of bytes ï in the implementation, the number of 

injected bytes can never exceed the length of the original payload. The fuzzing states Inject, 

Delete, and Mutate have probabilities d1, d2, and d3, respectively, such that d1 + d2 + d3 = 1. The 

state BOF has probability d4. 
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The probability of directly transitioning to the Send state is X2. Based on the fuzzing state 

probabilities and the probability of transitioning to the Send state, the overall probability of 

choosing a specific fuzzing state is di - diX2 | i ɴ  (1, 2, 3). 

Finally, in the Send state, the fuzzing engine has a X3 probability of transitioning to Sf and ending 

the current fuzzing iteration. Otherwise, there is a 1 - X3 probability to return to S2 and restore 

the payload obtained from the construction phase. 

3.3.2 Generation Guided Fuzzing 

Generation-guided fuzzing depends on deep knowledge of the protocol to generate semantically 

valid test cases. Figure 3.2 (right) illustrates the Markov model for generation guided fuzzing. 

The fuzzer generates a CONNECT packet first before generating other packets at random. Steps 

S0 and S1 comprise the payload generator component. Step S2 performs the actual fuzzing 

operation. For simplicity, we have condensed the Inject, Delete, and Mutate states into a single 

I/D/M state. The probabilities for state transitions S2 Ÿ Send, S2 Ÿ I/D/M, Send Ÿ S2, and Send 

Ÿ Sf are consistent between both models. In fact, both models are identical once state S2 is 

reached, because the actual fuzzing of the payload is independent from how to obtain that 

payload. 

3.3.3 Markov Modeling as a Bernoulli Process 

Since each state transition depends solely on its transition probabilities, and each probability is 

assumed to be random, then we may also demonstrate each Markov model as a finite Bernoulli 

process [51]. Namely, we can describe each Markov chain as a sequence: 
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In the sequence, S is the set of states in the Markov model and si Ÿ sj describes a direct 

transition from state si to state sj. Each state transition si Ÿ sj is a Bernoulli trial with Bernoulli 

variable Xij = X(si Ą sj). The probability of the fuzzing engine transitioning from state si to state sj 

is pXij  . This value is simply the probability value given for that corresponding transition in 

Figure 3.2. 

3.4 FUME: A Fuzzer for MQTT Brokers 

In this Section, we present FUME, a generation-and-mutation guided fuzzer for MQTT brokers. 

We first introduce the architecture of our fuzzing model. We then discuss each component of the 

architecture. 

3.4.1 Overview: Architecture 

First we introduce a high-level overview of FUME, which can be seen in Figure 3.4. There are 

five major components to the modeled architecture: the central component (simply called 

ñFUMEò), the user-defined parameters, the payload generator, the user filesystem, and the 

broker. 
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Figure 3.4: An overview of FUMEôs fuzzing architecture. 

The role of each component can be briefly summarized as follows: 

¶ Central component (ñFUMEò): This contains the two fuzzing engines. It also handles 

communication and response monitoring from the target broker. 

¶ User-defined parameters: Allows the user to configure aspects of the fuzzer, such as the 

probabilistic values X1, X2, and X3. 

¶ Payload generator: Generates a sequence of syntactically valid control packets from scratch. 

¶ Filesystem: Stores the input corpus and logs more test cases when new responses are 

observed from the broker. 

¶ Broker: The target broker. May be local or remote. 






































































































































































































































































