
 1

A BitTorrent-Driven Distributed  

 
Abstract—BitTorrent is a popular peer-to-peer file-sharing 

protocol that utilizes a central server, known as a “tracker”, to 
coordinate connections between peers in a “swarm”, a term used 
to describe a BitTorrent ad-hoc file sharing network. The tracker 
of a swarm is specified by the original file distributor and trusted 
unconditionally by peers in the swarm. This central point of 
control provides an opportunity for a file distributor to deploy a 
modified tracker to provide peers in a swarm with malicious 
coordination data, directing peer connection traffic toward an 
arbitrary target machine on an arbitrary service port. Although 
such an attack does not generate huge amount of attack traffic, it 
would set up many connections with the victim server 
successfully and hold these connections until time out, which 
could cause serious denial-of-service by exhausting a server’s 
connection resource. In this paper, we present such an attack 
that is entirely tracker-based, requiring no modifications to 
BitTorrent client software and could be deployed by an attacker 
right now. The results from both simulation and real-world 
experiments show the applicability of this attack. Due to the 
skyrocketing popularity of BitTorrent and numerous large-scale 
swarms existed in the Internet, BitTorrent swarms provide an 
intriguing platform for launching distributed denial-of-service 
attacks based on connection exhaustion. 
 

Keywords-BitTorrent, Distributed denial-of-service, Peer-to-peer 
networks 

I. INTRODUCTION 
Over the past several years, peer-to-peer (P2P) networks 

have enjoyed a tremendous rise in popularity, primarily as a 
means of transferring large files over the Internet. In 1999, 
“Napster” became the first peer-to-peer file-sharing network to 
attract mainstream attention and was widely used to share 
music via the Internet. The Napster network makes use of a 
centralized server to maintain a list of currently connected 
clients and the files that each client makes available at a given 
point in time [3].  

The next peer-to-peer file-sharing protocol to garner a great 
deal of attention was “Gnutella” [4]. Unlike Napster, Gnutella 
provides a true peer-to-peer network that does not need 

 
This research was supported by NSF grant CNS-0627318 and Intel 

Research Fund. 
 

centralized servers for client tracking. Instead, a Gnutella client 
requires only the address of a single remote peer to bootstrap 
its connection to the Gnutella network, obtaining the identities 
of further peers by querying the peer or peers used during the 
bootstrap phrase [4]. 

Following Gnutella, the next wave of peer-to-peer file 
sharing came in the form of the “FastTrack” protocol, which 
implemented a supernode-based architecture [5].  A supernode 
is a high-powered, well connected client in the P2P network 
that can assume the functionality of a directory server for a 
number of lower-powered or lesser-connected clients, relieving 
overheard from those machines and allowing for greater 
scalability. The most popular of the FastTrack-based networks, 
Kazaa, achieved a great deal of popularity around 2003 [5]. 

“BitTorrent” is a different peer-to-peer protocol for sharing 
large files over the Internet created by Bram Cohen [6]. 
Because of its file-centered design and its fairness mechanism 
that rewards users for up sharing [9], BitTorrent is very 
efficient in transferring large files among peers, and hence, has 
gained its popularity in the last several years [6].  

However, BitTorrent has a serious vulnerability that has not 
been discovered before. BitTorrent utilizes a central server, 
known as a “tracker”, to coordinate connections between peers 
in a “swarm”, a term used to describe a BitTorrent ad-hoc file 
sharing network for a file (or a set of files) provided by a file 
distributor. The tracker of a swarm is specified by the swarm’s 
original file distributor. All peers in the swarm trust the tracker 
without implementing any authentication or verification 
procedures. This central point of control provides an 
opportunity for a file distributor to deploy a modified tracker to 
provide peers in a swarm with malicious coordination data, 
directing peer connection traffic toward an arbitrary target 
machine on an arbitrary service port.  

In this paper, we present a potential attack that exploits the 
above BitTorrent vulnerability. By deploying such an attack, a 
malicious attacker could use a popular file (such as a pirated 
movie) as a bait to launch an application-level, connection 
exhausting distributed denial-of-service (DDoS) attack using 
the members of a BitTorrent swarm. This BitTorrent-driven 
attack does not require any modifications to the client-side 
BitTorrent software, and hence, it could be immediately 
implemented in the current BitTorrent world by an attacker. 
Instead of sending out attack traffic from an attacker’s 

Denial-of-Service Attack 
Jerome Harrington,   Corey Kuwanoe,   Cliff C. Zou 

School of Electrical Engineering and Computer Science 
University of Central Florida 

Orlando, FL 32816 
psi@y0ru.net, eschalon@gmail.com, czou@cs.ucf.edu 



 2

compromised computers, the actual DDoS attack traffic is 
initiated by the large number of innocent peers within a swarm, 
which makes the attack efficient, easy to be implemented, and 
hard to defend. Furthermore, the BitTorrent attack causes real, 
complete TCP connections to be made to an arbitrary service 
port specified by an attacker, allowing the attack to be adapted 
to a range of target services such as HTTP and SMTP. 

The rest of this paper is organized as follows. The related 
work is introduced in Section II. We introduce BitTorrent and 
describe its architecture in Section III. In Section IV, we 
present details of the vulnerability inherent in the BitTorrent 
architecture, and provide the theory behind our DDoS attack. 
Then, in Section V, we evaluate our BitTorrent-driven attack, 
both by simulations and a small-scale real world experiment. 
We look at some possible defense tactics against the presented 
attack in Section VI. Finally we summarize this paper in 
Section VII and discuss some opportunities for future work.  

II. RELATED WORK 
    Many people have studied how to secure a peer-to-peer 

network so that the network can run normally when it is under 
attack, either from outside machines or from malicious 
members in the P2P network. Wallach [17] presented a survey 
of P2P network security including routing protocol, fairness 
and trust issues. Castro et al. [16] presented attacks to prevent 
correct message delivery in structured peer-to-peer overlays 
and also defenses to these attacks. Douceur et al. [15] studied 
Byzantine fault isolation in a P2P distributed file system. [18] 
and [19] presented a set of defenses against various denial-of-
service attacks in P2P systems. Our research is about how 
attackers could use a P2P network to conduct large-scale DDoS 
attacks to other targets, not the P2P network itself. 

    Attackers could also take advantage of the P2P network 
infrastructure to facilitate their attacks to members of a P2P 
network, such as using a P2P network to propagate an Internet 
worm. Yu et al. [21] presented a P2P-based worm attack and 
provided its propagation model. Zhou et al. [20] presented a 
self-defense infrastructure inside a P2P network to contain 
P2P-based worms. A P2P-based worm tries to infect members 
of a P2P network, which is different from the BitTorrent-driven 
DDoS attack presented in this paper. 

    BitTorrent is a special P2P network protocol [9]. Current 
research on BitTorrent is mainly on modeling and analyzing its 
robustness, fairness and performance [22, 23, 24, 25]. Liogkas 
et al. [14] presented three selfish-peer exploits and studied 
BitTorrent’s robustness under these exploits. No research has 
been done on exploiting BitTorrent to attack an arbitrary target.   

The BitTorrent-driven DDoS attack we present in this paper 
utilizes the communication center (i.e., the tracker) of a 
BitTorrent swarm to direct connections from members of the 
network to a target. Conceptually speaking, this attacking idea 
is similar to the idea deployed by the botnet monitoring system 
presented in [26]: by hijacking the domain name of the 
communication center of a botnet (the command & control 
server), the botnet monitor is able to redirect connections from 
members of the botnet to itself [26].   

“DNS reflection attack” [27] is an amplification flooding 
attack: an attacker sends spoofed DNS queries to many DNS 
servers, letting those DNS servers generating a larger volume 
of DNS response traffic to a spoofed victim. Compared to this 
DNS reflection attack, the proposed BitTorrent attack exhausts 
connection resource of a victim instead of bandwidth of a 
victim.  

III. BACKGROUND ON BITTORRENT 
The BitTorrent protocol was developed by Bram Cohen 

and originally released in 2001 [2]. BitTorrent differs from 
earlier peer-to-peer protocols because there is not a single 
BitTorrent network. Instead, smaller ad-hoc networks, known 
as swarms, are formed for each file (or set of files) that is being 
transferred. The members of each of these swarms regularly 
announce their presence to a centralized server, or “tracker”, 
which maintains a list of all currently connected peers, and 
distributes that list among the peers as they announce to the 
tracker.  

To transfer a file among a group of users via BitTorrent, the 
original distributor of the file must first have a server available 
that is running BitTorrent tracker software. Then, he or she 
must generate a “torrent” file. This file contains the URL of the 
tracker to which peers in the swarm should announce. 
Additionally, the total payload to be transferred is divided into 
a group of smaller chunks that are all hashed separately, and 
these checksums are also added to the torrent file. The torrent 
file is then registered with the tracker. At this point, the 
distributor of the file must provide an initial “seed” for the 
torrent. That is, he or she must launch a BitTorrent client, load 
the previously created torrent file, and direct the client toward 
the file that he or she already possesses. 

At this point, the torrent file can now be offered to potential 
downloaders via any normal distribution method. Most often 
this is done by publishing the torrent file on a popular website. 

When a downloader retrieves a torrent file and opens it 
within their BitTorrent client software, the client reads the 
tracker URL contained in the torrent file, and announces itself 
to the tracker. The tracker then records the IP address of the 
new peer and a timestamp indicating the time at which the peer 
last checked in to its local database. The tracker returns a 
response to the client containing a list of addresses belonging 
to the other clients in the swarm, as well as an indication of 
whether or not each peer in the swarm is a seeder that 
possesses the file in its entirety or not. 

Upon receipt of this list of peers from the tracker, the 
BitTorrent client then begins making connections to the listed 
machines, requesting individual chunks of the payload. When a 
chunk is received in its entirety, it is hashed, and the resulting 
checksum is compared to the checksum given for the chunk in 
the torrent file. If the two checksums match, then the client 
considers the chunk to be completed, and will no longer 
request that chunk of data from peers. This process continues, 
with the client connecting many peers at a time, requesting 
chunks and downloading them in parallel. Because of this 
parallel download model, each client transfers data with many 



 3

active members in its swarm at the same time. Since transfer 
speeds actually increase as the size of the swarm grows, this 
makes BitTorrent ideal for transfer of files that are in high 
demand and provides a more economical means of file 
distribution than a traditional client-server model as the cost of 
bandwidth can be shared among all participants in a swarm. 

While the payload is being downloaded, a client will 
announce regularly to the tracker, confirming its continued 
participation in the swarm and receiving updated peer lists each 
time it announces. Once a given client has successfully 
downloaded all chunks of the torrent payload and verified that 
their checksums are correct, that client will again announce to 
the tracker, declaring itself as a seeder. 

Fig. 1 illustrates the architecture and communication paths 
of a typical BitTorrent swarm. As seen here, there exists a 
control path between each peer in the swarm and the 
centralized tracker server whenever the peer announces itself to 
the tracker. Any given peer may additionally have data 
connections with any other peers. Each data connection 
between peers is independent of all other data connections in 
the swarm. Therefore, a single peer is free to download chunks 
from any combination of peers within the swarm. 

 
Figure 1:  Architecture of a normal BitTorrent swarm 

     

Although it was originally released in 2001, the BitTorrent 
protocol began to become truly popular among file sharers after 
the decline of the FastTrack-based networks, primarily starting 
in 2004 [10]. BitTorrent is currently being used for many 
legitimate and legal purposes, including distribution of Linux 
ISO images and software updates for Blizzard’s multi-player 
online role-playing game World of Warcraft. Recently, Warner 
Brothers has made a deal with BitTorrent to distribute and sell 
over 200 Warner Brothers movies and TV programs through 
BitTorrent [11]. BitTorrent has arguably received more 
attention from legitimate interest groups than any previous 
peer-to-peer file sharing protocols or networks. 

Meanwhile, BitTorrent has become massively popular 
among the piracy community, being used to transfer music, 
movies and television shows en masse. Such popular torrent 
directory websites, such as The Pirate Bay [7] and mininova 

[8], allow anyone to upload a torrent file, usually anonymously, 
pointing to an arbitrary tracker specified in the torrent file. 
Thus, it is possible for a malicious file distributor to create a 
torrent using a tracker over which he or she has full control, 
and offer it to a huge pool of potential downloaders in an 
effective and straightforward manner. 

These torrent directories have proven to be quite popular, 
often hosting numerous torrents with one thousand or more 
downloaders or, in BitTorrent terms, leechers at any time. 

IV. A VULNERABILITY IN BITTORRENT ARCHITECTURE 

A. Modifying the Tracker 
As we have previously seen, peers in a BitTorrent swarm 

rely on the response provided by the tracker at announce time 
to determine the identities of the other clients within the swarm 
and, consequently, what peers they should connect to. 
Therefore, if an attacker has control of a tracker, he or she can 
alter the response that the tracker provides to the peers in the 
swarm.  

In our experiments, we made use of an open-source PHP 
tracker called “BlogTorrent” [1]. Our modifications were 
limited to a single function called BTAnnounce() in the tracker 
program. This function is called each time a client announces 
to the tracker. The function’s pseudo-code is listed below. It 
demonstrates the primary logic involved in accepting a peer 
announcement and returning normal output to a BitTorrent 
client: 

 
1. remote_addr = IP address of announcing peer 
2. port = BitTorrent port of the announcing peer 

 
3. // split the IP of the announcing peer 
4. // into an array of its octets 
5. peer_ip_array = split remote_addr on '.' 

 
6. // pack the contents of peer_ip_array into 
7. // a binary string of unsigned char 
8. peer_ip = pack("C*", peer_ip_array[0],   

peer_ip_array[1], peer_ip_array[2], peer_ip_array[3]) 
 

9. // pack the peer's port number into 
10. // a binary string of unsigned short 
11. peer_port = pack("n*", port) 

 
12. // generate 0-127 based on the current minute 
13. time = round_to_int((time() % 7680) / 60) 

 
14. // if the peer is a seeder, set the high bit of time 
15. if peer is a seeder 
16.     time = time + 128 
17. endif 

 
18. // pack time into a binary string of unsigned char 
19. time_out = pack("C", time) 

 
20. // concatenate time, peer_ip, and peer_port to  
21. // produce the peer entry in the expected format 
22. peer_data = time + peer_ip + peer_port 



 4

 
23. // update or add the peer to the local database 
24. if peer is in database 
25.     update entry to peer_data 
26. else 
27.     add peer to database with peer_data 
28. endif 

 
29. // initialize the string to be returned to the client 
30. output = '' 

 
31. // concatenate the database entries for all peers 
32. // to generate the output to be returned 
33. foreach peer 
34.     output = output + peer 
35. endforeach 

 
36. // this is the string in the expected 
37. // format that will be returned to the client 
38. return 'd8:intervali1800e5:peers' + length(output) + ':' + 

output + 'e' 
 

This function BTAnnounce() serves two main purposes. 
First, it serves to maintain a local database of currently 
connected peers within the swarm. Second, it is responsible for 
creating a peer list to be returned to the calling client, 
containing the addresses of the currently connected peers 
stored in the database. 

We have modified this function to return our own list of 
configurable addresses along with the legitimate data returned 
normally. Given the pseudo-code above, our additions would 
take place between lines 30 and 31. 

Here, we repeat the same process as shown in lines 3 to 22 
to construct a data entry for each of our configured target 
address and port combinations. Our illegitimate entries are then 
concatenated and assigned to the output variable before line 31. 
Having pre-populated the output with connection information 
for our target or targets, we then proceed to add the legitimate 
peers to the output string, yielding a binary string to be 
returned to the BitTorrent client that contains the addresses of 
the legitimate peers within the swarm as well as the addresses 
(and service ports) of the arbitrary machine or machines that 
we have configured to attack. 

With the ability to inject arbitrary IP addresses into the peer 
list, peers in the swarm will now attempt to connect to those 
targets in an attempt to download chunks of the advertised file. 
In the next section, we will see how this vulnerability in the 
BitTorrent architecture may be exploited to stage a DDoS 
attack. 

Fig. 2 shows the network architecture of a modified 
BitTorrent swarm. The modified swarm is able to function 
normally as a file-transferring swarm since all peers can 
transfer files to each other normally. In addition, peers within 
the swarm will make additional connections to our supplied 
target. 

A modified BitTorrent swarm can be configured to attack 
multiple targets as well. Note that the addresses of these 
multiple targets may belong to the same server or different 

machines. If a target has multiple IP addresses assigned to it 
(e.g., a web farm), this technique can be used to increase the 
number of connections being made to a target. Alternatively, 
this could be used to target several distinct machines at the 
same time. 

 

 
 Figure 2:  Architecture of our modified swarm  (BitTorrent file 

exchange function is still working, but each peer would generate an additional 
connection to a victim target on a specified service port) 

 

B.  A BitTorrent-driven DDoS Attack 
Given the current usage of BitTorrent and the capability of 

providing clients with arbitrary addresses in the peer list, it is 
not difficult to envision a realistic attack scenario. An attacker 
would first set up a modified tracker, most likely on a server 
that he or she has previously compromised. Next, the attacker 
would need to obtain a file or a set of files that are likely to 
generate high demand ― a pirated copy of a blockbuster movie 
still in theatrical release or a popular new computer game, for 
example. With these prerequisites in place, the attacker is now 
free to generate a torrent file for his or her payload and register 
the torrent with the modified tracker. 

While the attacker could use any means to distribute the 
newly created torrent, the most straightforward approach would 
be to upload the torrent to a highly trafficked torrent directory, 
such as The Pirate Bay [7]. Upon upload to such a site, the 
torrent is made available for any user to download freely and 
join the swarm. At that point, the peers in the swarm that are 
downloading the file will begin connecting to the supplied 
target or targets, while still retrieving the torrent payload data 
normally. 

When the number of peers in the swarm with a connection 
open to an attacked target exceeds the maximum number of 
connections the target application is configured to accept, the 
victim service will no longer accept new TCP connections, 
rendering it unreachable and causing a successful denial-of-
service attack. 

From the descriptions above, we can see that this 
BitTorrent-driven DDoS attack has the following properties: 

 



 5

• It requires no modification whatsoever to the 
BitTorrent client software. 

• The attack is hidden from clients since the attack traffic 
volume from each client is very small and all clients 
can still upload and download files normally. 

• The attack can target multiple victims on arbitrary 
service ports specified by the attacker.  

• The attack does not expose an attacker’s real 
compromised machine (i.e., the tracker) to a victim. 

• An attacker can arbitrarily decide the start and end time 
of a DdoS attack by controlling the tracker. 

 

V. EVALUATION OF BITTORRENT-DRIVEN DDOS ATTACKS 

A. Attack Simulation 
First, we evaluate our theoretical attack by using a 

controlled simulation. We make use of a virtual machine 
running Slackware Linux 10.2 and an Apache 1.3.x web server 
to act as our target machine. Our modified BlogTorrent tracker 
software is run on Mac OS X with Apache 1.3.3. The Mac 
machine also supplies the initial seed client and runs a 
multitude of BitTorrent client instances (using the command-
line client btdownloadheadless.py [12]), simulating the peers 
within the swarm.  

To monitor the number of connections made to the target at 
any given point in time, a script is written to constantly parse 
the Apache server-status page, reporting the number of 
concurrent requests being served at each parsing time.     

Additionally, a client-spawning script is used to control the 
generation of the client processes in the BitTorrent swarm. This 
script is written to wake up at the top of every minute, 
randomly spawning one to  client processes each minute 
(where  is an adjustable parameter), and logging the number 
of clients spawned along with the total number of peers in the 
swarm. The script would then go back to sleep until the top of 
the next minute. 

n
n

Fig. 3 shows the results from a medium-scale simulation. 
The maximum number of client processes to be spawned is set 
at 260. The client-spawning script is configured to spawn up to 
20 clients at the top of each minute. The attack is configured to 
be launched with no requirement on the minimum swarm size, 
and hence, the attack traffic, in terms of the number of attack 
connections, begins ramping up immediately, coming close to 
the current number of spawned peers. The magnitude of the 
attack closely follows the growing size of the swarm until the 
swarm reaches its maximum size 260. Once the size of the 
swarm stops growing, we observe that the attack magnitude 
then becomes cyclic for the remainder of the swarm’s lifetime. 
In addition, the attack magnitude is slightly smaller than the 
maximum possible attack magnitude 260 (each peer can set up 
one connection to the target at a time). The reason for the 
cyclic dynamics is because the connections from some peers 

have timed out and the new connections from these peers have 
not yet set up.  

     

Simulated attack 

0

50

100

150

200

250

300

1 11 21 31 41 51 61
Time (minute) 

Number of Peers Spawned 
Number of Attack Connections 

Figure 3:  Swarm size and attack magnitude during a simulation study with 
260 peers 

 
It would be better if we can verify the above prediction on a 

large-scale simulation as well, such as simulating a large 
swarm that has more than a thousand peers. Unfortunately, our 
current simulation testbed requires running all client processes 
on one single machine. A simulation with more than 500 peers 
would either cause out-of-memory error or crash our testbed 
machine. A large-scale simulation requires us to generate a 
brand-new simulation environment and run it on a cluster of 
machines. We plan to conduct this research as one of our future 
work. 

B. Peer Behavior 
Several interesting observations can be made with regard to 

the behavior of the attacking clients within a swarm. First, an 
attacking client will hold its connection to a target server open 
until the server times the connection out. For a standard 
Apache installation, this is usually a period of 5 minutes.  

    Second, during our simulation, we have also observed 
that BitTorrent clients re-attempt the connection every time 
they announce to the tracker. The clients have never blacklisted 
the target machine, despite the fact that it has never returned a 
valid response. This is due to the fact that the BitTorrent client 
software has not considered what to do when receiving an 
invalid response.  

    Another issue to be considered is what the actual data 
exchange looks like between a BitTorrent client and an 
attacked target. Upon connection to the target server, a 
BitTorrent client sends a request to the server containing the 
string “BitTorrent protocol”. This does provide a possible 
means of fingerprinting the attack connections.  

 



 6

 
 

Figure 4: A screen shot of a peer client downloading a file normally while 
sending attacks to multiple targets at the same time 

 
Fig. 4 is a screen capture of a popular BitTorrent client, 

Azureus [13]. In the screenshot, the client is currently being 
used as an attacker in our modified swarm. The “Azureus Peer 
Details” screen shows this client attacking two separate target 
addresses, 10.37.129.4 and 192.168.33.16. Simultaneously, the 
client is connected to a seeding peer, 10.37.129.3 and is 
transferring the torrent payload successfully. Note that Azureus 
displays a generic “Waiting for handshake” error. This error 
could be caused by a number of things, such as network latency 
or packet loss. Therefore, even if an end user checks this 
Azureus Peer Details screen, the user still has no clear clue that 
any malicious activity is taking place. 

C. Real World Experiment 
    In addition to our attack simulation and experiments 

around the behavior of peers in a swarm, we conducted a 
small-scale “real world” test of our method. For this, we set up 
a modified tracker, generated a torrent file and registered it 
with our tracker. The torrent was then given out to a small 
group of friends, who were informed as to the nature of the 
experiment they were to be taking part in. 

In this real-world experiment, our tracker was configured to 
provide the peers with the IP address of a web server under our 
control as the attack target machine. Furthermore, our tracker 
was configured with a value of one for the minimum number of 
peers required to begin the attack. We were thus able to see 
attack traffic being spawned immediately upon the swarm 
becoming active. 

Fig. 5 illustrates the number of attack connections 
generated by our BitTorrent swarm during a 24-hour window 
of our swarm’s lifetime. Each data point is the average number 
of attack connections served by the target web server within 
one hour. This average was calculated by tracking the number 
of open connections at an interval of one second. This running 
count was then totaled and divided by 3600 during later 
analysis to compute the average number of connections over 
the course of each 1-hour period.  

 

"Real World" Attack 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23
Time in Hours

N
u
m

b
er

 o
f 
A
tt

ac
k 

C
on

n
ec

ti
on

s

 
Figure 5:  Attack magnitude during a “real world” experiment 

 
We experienced a steady stream of new downloaders 

during the first six hours of this window. This correlates to the 
increasing number of attack connections being spawned during 
that time period. The attack peaked during hour 6, and after 
that time, declined in terms of the number of attack 
connections. This is due to the fact that our swarm experienced 
the heaviest influx of traffic early on. As the timeline 
progresses, the peers who joined early on are completing their 
downloads and becoming “seeding peers”. As a result of this 
state change, those peers are no longer connecting to other 
peers in the swarm since they stopped seeking chunks of the 
offered file for download.  

From the above analysis, we see that it is important that a 
swarm remains sufficiently populated with downloading peers 
at any given point in time to make this attack effective. This 
has been taken into account in our original attack proposal and 
is confirmed here. As mentioned in our attack proposal, large, 
public torrent directories have user pools large enough to make 
such attacks effective and sustainable for a sufficient period of 
time. 

Another way in maintaining the population of downloading 
peers is to prevent them from finishing download and 
becoming “seeding peers”. We have proposed two approaches, 
which are discussed in detail in Section VII.  

VI. POSSIBLE METHODS OF DEFENSE 
 

There are several possible methods that could be used to 
defend against the proposed BitTorrent-driven DDoS attack. 
We introduce them in this section. 

A. Blacklist-based Traffic Filtering by Target 
The first possible method of defense against our attack is 

for the target to detect and block attack traffic. As explained in 
Section V.B, an attack TCP connection coming from a 
BitTorrent peer does not follow the target service specifications 
and contains the string “BitTorrent protocol”. This makes it 



 7

easy for a target machine to detect BitTorrent-driven attack 
connections and block further attack connections by using a 
blacklist.     

This traffic filtering defense, however, has its limitations. 
Given the dynamic nature of BitTorrent swarms, the blacklist-
based filtering defense requires the blacklist to be updated 
frequently in order to block attacks from new BitTorrent peers. 
In addition, the blacklist could be very large if a large 
BitTorrent swarm is used in the attack.  

B. Torrent Validation 
Another alternative for defending against the outlined 

attack is for BitTorrent directory websites to validate submitted 
torrent files before making them available to the public. 
Presumably, this validation would be done by: (1). joining the 
swarm specified in a torrent file; (2). analyzing the peer lists 
returned by the tracker over a period of time; and (3). verifying 
that the hosts returned in the peer lists are in fact legitimate 
peers.  

However, this is not a trivial process, and it is prone to 
error. In addition, an attacker could set a minimum swarm size 
that must be satisfied before the tracker begins to behave 
maliciously. Thus, early in the torrent’s lifespan, when 
verification is most likely taking place, the tracker would 
behave normally and not raise any alarms during the 
verification process.  

C. Strict Client Protocol Checking 
Another defense would be for the authors of BitTorrent 

clients to add an increased level of intelligence to their client 
software. This would still require that each peer connects to the 
target once. If a peer receives an invalid response (i.e., not 
following BitTorrent protocol) from a connected target, the 
client software on the peer can blacklist that target IP address 
and not attempt any further connections to the target.  

However, such a defense could be effective only if a large 
portion of BitTorrent client software have been upgraded. This 
could be hard to realize, because currently there are more than 
50 BitTorrent client software existed and used by users [30]. In 
addition, many users never bother to upgrade their BitTorrent 
client software as long as their client software works fine in file 
downloading. 

 
D. Disabling Malicious Trackers 

The victim of an attack could attempt to locate the 
malicious tracker and have it disabled or removed from the 
network through the collaboration with the network or ISP 
hosting the tracker machine. The tracker is the single point of 
failure for the survivability of the DDoS attack introduced in 
this paper.  

As with all DDoS attacks, this is easier said than done. 
First, the victim needs to identify the tracker based on the 
limited data transmitted by a BitTorrent swarm (the tracker 
does not attack a victim directly). Second, shutting down a 
remote tracker would need collaboration from another ISP, 
which is a time and resource consuming task. 

E. Behavioral Anomaly Detection 
We have introduced several deterministic techniques above 

for detecting and filtering the BitTorrent attack. Another 
defense method is to use behavioral or probabilistic-based 
anomaly detection. Researchers have proposed many anomaly 
detection based DDoS defense systems, such as [28, 29]. 
Ranjan et al. [28] presented a “DDoS-resilient scheduler” to 
prioritize incoming connections based on a suspicion score 
assigned to each connection.  Kim et al. [29] presented a 
dynamic DDoS defense system “based on a per-packet score 
which estimates the legitimacy of a packet given the attribute 
values it carries.”  

Anomaly detection based DDoS defense would also be 
suitable for detection and defense of the proposed BitTorrent 
based DDoS attack. It is a rich research area to explore, but we 
will not discuss further since it is out of the focus of this paper.  

VII. CONCLUSION 
In this paper, we presented a vulnerability inherent in the 

BitTorrent architecture which can be leveraged to cause 
innocent peers within a swarm to make connections to one or 
more configured target machines on arbitrary service ports. 
Further, we showed how a malicious attacker might utilize this 
vulnerability to launch a distributed denial-of-service attack. 
Although such an attack does not generate huge amount of 
attack traffic, it could cause serious denial-of-service by 
exhausting a victim server’s connection resource.  

An attack launched using our method has a number of 
positive properties from the perspective of attackers. First, the 
attack does not require any modification to the BitTorrent 
client software used by peers within a swarm ― it only 
requires a modified tracker to be run. Second, the attack 
provides a high level of configurability, with the ability to 
configure an arbitrary number of hosts and arbitrary service 
ports to be attacked. Third, because the attack does not affect 
the normal transfer of file-sharing data within a swarm, the 
attack is stealthy to existing BitTorrent clients, reducing the 
likelihood that a peer would notice that it was being used to 
generate attack traffic. Fourth, the attack also hides the identity 
of the real malicious host, the tracker, from the target machine 
or machines. Attack victims will only receive connections from 
the peers within a swarm. Finally, an attacker can arbitrarily 
start or stop the attack and the peers will respond accordingly 
upon their next announcement to the tracker. 

A. Future Work 
There are several areas in which additional research is 

useful. The primary opportunities for improvement to our work 
at this point are in artificially extending a peer’s life as a 
downloader and further analysis of the behavior of large-scale 
swarms that are employing our method. 

 As seen previously, it is imperative to maintain a high 
saturation of downloaders within a swarm to increase the 
effectiveness of an attack. This is because seeding peers will 
not initiate peer connections to retrieve data chunks, as they 
already possess the complete payload. Thus, if attackers can 
extend the length of time that a peer remains a downloader, 



 8

rather than a seeder, they can increase its usefulness as a 
member of the attack. 

There are several possible approaches that might be taken 
to extend the lifetime of a downloader. First, the initial seed’s 
upload bandwidth could be throttled much lower than its 
maximum throughput. By limiting the amount of data that the 
initial seed is able to push out to peers requesting chunks of the 
file, it will take each peer a longer time to download the torrent 
payload, resulting in an extended download lifetime for peers 
that are downloading from the initial seed. 

 A second approach, which is possibly more effective, to 
increasing the lifetime of a downloading peer is to attempt to 
provide inaccurate data from the initial seed. For example, the 
initial seed may be running a modified client that modifies a 
chunk of data before sending it to the requesting peer. This 
behavior could be configurable and controllable by the 
attacker. For instance, a modified seed might properly deliver 
all chunks of a file except for one. If left like this indefinitely, 
all downloading peers would eventually receive the entire 
payload accurately, with the exception of the last chunk. From 
the client perspective, this has the effect of causing the 
download to be stuck at, for example 99% for an extended 
duration. After some time has passed, the attacker could disable 
this behavior on the seed, and allow the waiting clients to 
complete the download successfully. By using such a technique 
sparingly, it is quite likely that the attacker could increase the 
effectiveness of his or her attack while maintaining relative 
stealth. 

The second area in which our work could be built on is to 
study the behavior of larger swarms carrying out our attack. 
Due to limited resources, both the simulation and our “real 
world” experiment were executed with relatively small swarms. 
It would be useful to stage simulations involving hundreds or 
thousands of peers, as this would more realistically model the 
environment in which a live attack would be executed. We are 
currently working on joining the PlanetLab project [31] and 
use this large-scale distributed network to conduct a realistic 
denial-of-service attack experiment. 

Finally, it may also be possible to extend the techniques 
presented here to other peer-to-peer networks. This technique 
is potentially applicable to any peer-to-peer network that has a 
centralized control server. It may be possible, for example, to 
create a modified Gnutella supernode capable of reporting to 
clients that a given host has a specific file when, in fact, it is the 
target of an attack. 

REFERENCES 
 
[1] http://www.blogtorrent.com 
[2] C. Thompson, “The BitTorrent Effect”. 

http://www.wired.com/wired/archive/13.01/bittorrent.html
[3] http://en.wikipedia.org/wiki/Napster 
[4] http://en.wikipedia.org/wiki/Gnutella 
[5] http://en.wikipedia.org/wiki/Fasttrack 
[6] http://en.wikipedia.org/wiki/Bittorrent 
[7] http://thepiratebay.org/ 

[8] http://www.mininova.org/ 
[9] B. Cohen, “Incentives Build Robustness in BitTorrent”.  

http://www.bittorrent.org/bittorrentecon.pdf
[10] R. Naraine, “BitTorrent, 'Gi-Fi,' and Other Trends in 2004”. 

http://www.internetnews.com/ent-news/article.php/3294271
[11] B. Helm, “BitTorrent Goes Hollywood”, BusinessWeek, May 2006. 

http://www.businessweek.com/technology/content/may2006/tc2006050
8_693082.htm

[12] The MST3K BitTorrent Guide.  
http://mst3k.booyaka.com/bittorrent_guide.shtml

[13] Azureus : Java BitTorrent Client.  http://azureus.sourceforge.net/ 
[14] N. Liogkas, R. Nelson, E. Kohler, L. Zhang, “Exploiting BitTorrent For 

Fun (But Not Profit)”, 5th International Workshop on Peer-to-Peer 
Systems (IPTPS), 2006. 

[15] J. R. Douceur, J. Howell, “Byzantine Fault Isolation in the Farsite 
Distributed File System”, 5th International Workshop on Peer-to-Peer 
Systems (IPTPS), 2006. 

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach, 
“Security for structured peer-to-peer overlay networks.” In OSDI, 2002. 

[17] D. Wallach, “A Survey of Peer-to-Peer Security Issues”, International 
Symposium on Software Security, 2002. 

[18] P. Maniatis, T. J. Giuli, M. Roussopoulos, D. S. Rosenthal, M. Baker, 
“Impeding attrition attacks in P2P systems”,   Proc. 11th workshop on 
ACM SIGOPS European workshop: beyond the PC, 2004. 

[19] T. J. Giuli, Maniatis, M. Roussopoulos, M. Baker, D. S. Rosenthal, M. 
Roussopoulos, “Attrition Defenses for a Peer-to-Peer Digital 
Preservation System”, Proc. USENIX Technical Conference, 2005. 

[20] L. Zhou, L. Zhang, F. McSherry, N. Immorlica, M. Costa, S. Chien, “A 
First Look at Peer-to-Peer Worms: Threats and Defenses”, 4th 
International Workshop on Peer-To-Peer Systems (IPTPS), 2005. 

[21] Wei Yu, Coryer Boyer, Sriram Chellappan and Dong Xuan, Peer-to-Peer 
System-based Active Worm Attacks: Modeling and Analysis, in Proc. of 
IEEE International Conference on Communications (ICC), 2005. 

[22] A. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing and 
Improving BitTorrent Performance”, In Proc. Infocom 2006. 

[23] D. Qiu and S. Srikant, “Modeling and Performance Analysis of 
BitTorrent-Like Perr-to-Peer networks”, In Proc. SIGCOMM 2004. 

[24] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, 
“Measurements, Analysis, and Modeling of BitTorrent-like Systems”, In 
Proc. ACM/SIGCOMM Internet Measurement Conference (IMC), 2005. 

[25] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The bittorrent p2p file-
sharing system: Measurements and analysis. In 4th International 
Workshop on Peer-to-Peer Systems (IPTPS), Feb 2005. 

[26] D. Dagon, C. C. Zou, and W. Lee, “Modeling Botnet Propagation Using 
Time Zones,” Proc. 13th Annual Network and Distributed System 
Security Symposium (NDSS), 2006. 

[27] G. Evron and R. Vaughn, “DNS Amplification Attacks,” 
http://www.securiteam.com/securityreviews/5GP0L00I0W.html 

[28] S. Ranjan, R. Swaminathan, M. Uysal, and E. Knightly, “DDoS-
Resilient Scheduling to Counter Application Layer Attacks under 
Imperfect Detection,” Proc. INFOCOM, Barcelona, Spain, 2006. 

[29] Y. Kim, W.C. Lau, M.C. Chuah, and H.J. Chao, “Packetscore: Statistics-
based Overload Control Against Distributed Denial-of-Service Attacks,” 
Proc. INFOCOM, HongKong, 2004. 

[30] Comparison of BitTorrent software. 
http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software

[31] PlanetLab: An open platform for developing, deploying, and accessing 
planetary-scale services. 
https://www.planet-lab.org/ 

http://www.blogtorrent.com/
http://www.wired.com/wired/archive/13.01/bittorrent.html
http://en.wikipedia.org/wiki/Napster
http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Fasttrack
http://en.wikipedia.org/wiki/Bittorrent
http://thepiratebay.org/
http://www.mininova.org/
http://www.bittorrent.org/bittorrentecon.pdf
http://www.internetnews.com/ent-news/article.php/3294271
http://www.businessweek.com/technology/content/may2006/tc20060508_693082.htm
http://www.businessweek.com/technology/content/may2006/tc20060508_693082.htm
http://mst3k.booyaka.com/bittorrent_guide.shtml
http://azureus.sourceforge.net/
http://www.securiteam.com/securityreviews/5GP0L00I0W.html
http://en.wikipedia.org/wiki/Comparison_of_BitTorrent_software

	I. Introduction
	II. Related Work
	III. Background on BitTorrent
	IV. A Vulnerability in BitTorrent Architecture
	A. Modifying the Tracker
	B.  A BitTorrent-driven DDoS Attack

	V. Evaluation of BitTorrent-Driven DDoS Attacks
	A. Attack Simulation
	B. Peer Behavior
	C. Real World Experiment

	VI. Possible Methods of Defense
	A. Blacklist-based Traffic Filtering by Target
	B. Torrent Validation
	C. Strict Client Protocol Checking
	D. Disabling Malicious Trackers
	E. Behavioral Anomaly Detection

	VII. Conclusion
	A. Future Work
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


