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Abstract—Selection of clusterheads using energy efficient clus-
tering algorithms in wireless sensor networks (WSNs) is very
crucial as it affects the lifetime and performance of the network.
As clusterheads and cluster members (i.e., non-clusterheads)
expend different amounts energy, it is necessary that all nodes
resort to some rational scheme such that the connectivity and
proper functioning of the network is not compromised. In this
paper, we propose a Cost and Payment-based clustering algo-
rithm (CoPA) for energy efficiency in wireless sensor networks
under a game theoretical framework. The analysis is based on
a non-cooperative, repeated general-sum game, where each node
behaves selfishly in order to maximize its lifespan (payoff). We
demonstrate that the correlated equilibrium is a practical solution
for clusterhead selection which provides better performance
than the Nash Equilibria. Correlated equilibrium provides a
balance between the fully cooperative solution and the fully non-
cooperative solution in terms of implementation overhead. CoPA
produces a balanced distribution of responsibilities and energy
consumption between the sensor nodes as well as maximizes the
minimum payoff for every node. Results show that CoPA achieves
better performance in terms of network lifetime and throughput
compared to other popular clustering techniques.

I. INTRODUCTION

Applications of wireless sensor networks (WSNs) can be
found in a wide variety of fields such as medical care,
transportation, military, home security, and industrial. A typ-
ical WSN consists of a large number of sensors that have
unique characteristics such as autonomy, limited energy, lim-
ited processing capability, and contested radio environment
which make their tasks of sensing and communicating dif-
ficult [1]. Consequently, energy efficient mechanisms are em-
ployed at various layers of the protocol stack that ensure longer
longevity for the nodes and the network in general.

Clustering is a grouping technique where a network is
partitioned into several clusters– each of which has a clus-
terhead [2]. The clusterhead is responsible for efficient com-
munication between its cluster members and across other
clusters. Typically, a cluster member would communicate with
its clusterhead which in turn will communicate with other
clusterheads or the base station (sink) of the network. Thus,
the identification of clusterheads must be done is such a way
so that it prolongs the lifetime of the network and improves
the overall scalability of the network.

In this paper, we take a game theoretic approach to devise
a clustering algorithm for WSNs. Game theory is a powerful
mathematical tool that has been applied to numerous areas
of wireless communications for analyzing and predicting the
rational and selfish behaviors of various entities– the decisions
of which determine the outcome of the game [3]. In our ap-
proach, the nodes are the players who play the clustering game.
We propose a Cost and Payment-based clustering algorithm

(CoPA) where we formalize the profits and losses for each
node. CoPA has the provision to alternate the responsibility
of a clusterhead among the nodes, thereby balancing energy
using a weighted metric that combines the transmission power
and energy of each node. We formulate an anti-coordination
clustering game for 2 players as well as N players using only
local information. We derive the correlated equilibrium (CE)
for the clustering game by solving the linear optimization.
We use adaptive regret matching (no-regret) algorithm to
guarantee convergence of the probability distribution to the
CE. Furthermore, we prove and discuss the optimality of CE
solution for the clustering game, and compare it to the pure
and mixed strategy Nash Equilibria (MSNE) solutions in terms
of the efficiency and fairness among the nodes. Finally, we
evaluate the performance of our clustering algorithm with two
popular clustering techniques, and demonstrate that CoPA has
superior performance in terms of network lifetime and system
throughput.

II. RELATED WORK

Clustering in wireless sensor networks is an interesting
topic especially when it is studied under the game theoretic
framework. Various clustering algorithms have been proposed
such as the well-known LEACH [4] where the mechanism
of selecting a clusterhead is to ensure rotation of the roles
between the nodes in a probabilistic manner.

In [5], the authors proposed a an energy-efficient Adaptive
Clustering Hierarchy routing algorithm based on game theory.
The clusterhead selection is centralized and decided by the
base station based on the locations and remaining energy of the
nodes. The authors show that the algorithm is suitable for the
statically distributed WSNs. However, no theoretical analysis
has been provided beside the centralized selection mechanism
that could lead to higher energy consumption. In CROSS [2],
each sensor behaves selfishly in a non-cooperative manner in
order to conserve its energy. The authors provided the pure
and mixed strategy NE and the related expected payoffs of
the games. The possibility clusterhead absence could occur
continuously because of the dependency on selecting the
clusterheads based on each node’s probability. In [6], the
authors proposed a clustering algorithm based on game theory
for energy efficiency in wireless sensor network. Furthermore,
game theory based energy efficient CH selection approach is
proposed in [7] based on the Subgame Perfect NE (SPNE).
The clusterheads are selected based on SPNE decision.

In our work, we attempt to provide a new solution from
a game theory prescriptive for clustering in WSNs where we
study the correlated equilibrium and its properties. The CE



achieves strictly better performance compared to the NE and
therefore maximizes the network lifetime and throughput.

III. NETWORK MODEL

We consider a network with N sensor nodes represented
by the set N = {1, 2, 3, ..n}, and divide the entire network
into non-overlapping clusters. Each cluster has one clusterhead
that receives/transmits data packets from its cluster members
and also communicates with the sink in order to deliver
those data packets. Furthermore, we consider that the base
station is located outside the sensing field. Apart from the
communications, the clusterhead has additional responsibilities
than the cluster members which include aggregating (i.e.,
multiplexing and demultiplexing) the data of its members,
packet forwarding, and sometimes scheduling. Therefore, on
an average, the clusterheads expends more energy. This leads
to the situation where each node prefers not to be a clusterhead
as long there are others nodes willing to serve as clusterheads.
In case all the nodes decide to be cluster members (i.e., no
clusterheads), then the data of all cluster members cannot be
relayed to the sink which beats the purpose of having a sensor
network. Thus, to keep the networking operating in a fair
manner [8], the nodes must find it beneficial to rotate roles.

IV. CLUSTERING GAME

Let us formally define the game and the cost functions of the
nodes. Then we will analyse the equilibria and the no-regret
learning for the correlated equilibria.

A. Game Framework

We formulate an anti-coordination N−player and 2−
strategy symmetric game. The game is presented as G =
{N,S, U}. The players are represented by N ; each player
has the same action/strategy space represented by S, and their
utility is given by U . The set of strategies available to a sensor
node is to decide between being a clusterhead (CH) or a cluster
member (CM), and is represented as S = {CH,CM}. The
structure of network is described as a cost and payment model:
the nodes gain a specific payoff when they select one of these
strategies. Each node behaves selfishly in order to maximize
its own payoff (minimize the cost) and stay alive as long as
possible. A player may choose to serve as the clusterhead
and carry out the additional responsibilities for its members,
or refuse to be a clusterhead (e.g., prefer to be a cluster
member) in order to maximize its payoff. If more than one
player in close physical proximity opt to become a clusterhead,
then smaller clusters emerge. As a result, unnecessary control
overhead and power consumption would be incurred. However,
if none of the nodes opt to be a clusterhead, all the nodes will
suffer and all will obtain a payoff of 0 as the nodes will not
be able to send their data to the base station. The set of utility
functions of the nodes denoted by U(si) is given by:

U(si) =


0 when si = CM, ∀i ∈ N

1
Cch

when si = CH
1

Ccm
when si = CM

(1)

For the sake of simplicity, let us first provide the possible equi-
libria in the case of 2 players and their payoffs as presented in
Table I. Based on this payoff matrix, the best outcome occurs
when one of the nodes selects to be a clusterhead and the other
selects to be a cluster member.

TABLE I: Strategic form of 2-player clustering game with
strategies CH and CM .

CH CM
CH 1

Cch
, 1

Cch

1
Cch

, 1
Ccm

CM 1
Ccm

, 1
Cch

0 , 0

B. Cost Model
The total cost of being a clusterhead, Cch, consists of two

parts: i) the energy spent to transmit packets to the base
station and ii) the energy consumed for aggregating the packets
received from the cluster members. Thus,

Cch = Ctx(ch,BS) + Crx,aggr (2)
where Ctx(ch,BS) is the cost of transmission from the clus-

terhead to the base station, and Crx,aggr is the cost of receiving
and aggregating the packets from the cluster members. We
define Ctx(ch,BS) as:

Ctx(ch,BS) = d2
ch,BS · eamp + eelec (3)

where dch,BS is the distance between the clusterhead and the
base station, eamp the transmit amplifier dissipation in order to
achieve the required signal level, and eelec is the transmission
circuitry dissipation.

As for the cost for receiving and aggregating, it proportional
to the cluster size (i.e., k̄ average number of neighbors), i.e.,

Crx,aggr ∝ k̄ (4)

It is to be noted that the cluster members will be at varying
distances from the clusterhead and therefore the clusterhead
uses different power levels to transmit to its members. (We
assume that there is some power control algorithm is place–
the specifics of which is beyond the scope of this paper.) Thus,

Crx,aggr =

k̄∑
i=1

d2
i · eelec + k̄ · eaggr + elis (5)

where di is the distance of the ith cluster member from its
clusterhead and eaggr is the cost of aggregation for one cluster
member. elis is the cost of listening to the wireless medium
even though no packets are being to transmitted. The cost of
being a cluster member is the cost of transmission from node
i to its clusterhead chi considering the distance (di,chi

) is
calculated by:

Ccm = Ctx(i,chi) = eamp.d
2
i,chi

+ eelec (6)
According to above mentioned energy model and assuming

the base station is located outside the sensing region, the cost
of being a clusterhead is expected to be larger than the cost
of being a cluster member, i.e.,

Cch > Ccm (7)

C. Analysis and Equilibrium
1) Pure and Mixed Nash Equilibrium:

For the clustering game, we derive the solution concepts in
the form of Pure and Mixed Nash Equilibrium for 2-players
and N -players.
Lemma 1: Strategy pairs (CH,CM) and (CM,CH) are pure
strategy NE for 2-player clustering game.

Proof: In Table I, assume the row and the column are
the two players from the cluster. These players select strategy
pairs (CH,CM) and (CM,CH). The payoffs of the selection
are ( 1

Cch
, 1
Ccm

) and ( 1
Ccm

, 1
Cch

), respectively. Let us say that
the players select strategy pairs (CH,CH) and (CM,CM)



instead. Thus, the payoffs for those strategy pairs will be
( 1
Cch

, 1
Cch

) and zero, respectively. This means that the player
who is playing strategy CH does not have an incentive to
change the strategy to CM because of receiving less payoffs
(i.e., zero). Furthermore, the player who is playing strategy
CM does not have an incentive to change the strategy to CH
because of receiving less payoffs too (i.e., 1

Cch
). Thus, the

strategy pairs (CH,CM) and (CM,CH) are a pure NE for
this game according to the definition [9].
Proposition 1: For the anti-coordination clustering game for
N players, there are N pure NE where the strategy of a single
player is to select CH and all the rest of the nodes to select
CM .

The mixed strategy Nash Equilibrium of the clustering game
is a probability distribution p̂ over the pure NE where each
player will have equal expected payoff. Each node will take a
random selection conformity with the probability distribution.
Let α be the probability of playing CH and β = 1 − α be
the probability of playing CM . In order to compute these
probabilities, we calculate the expected utility function of
playing CH as:

UCH =
1

Cch
(8)

The expected utility of playing CM is obtained by:
UCM =

1

Ccm
· [1− (1− α)N−1] (9)

According to the definition of mixed NE [10], the expected
utilities of playing strategies CH and CM are equal and no
player has incentive to change her strategy. Thus,

UCH = UCM (10)

Substituting (8) and (9) in (10) and solving the expression in
order to calculate the probability α that corresponds to the
equilibrium, we get:

α = 1− (
Cch − Ccm

Cch
)

1
N−1 (11)

The distribution of the mixed strategy NE for the clustering
game is p̂ = {α, β} which means that the players will mix
their choice for selecting clusterhead strategy and cluster mem-
ber without incurious about the outcome. However, MSNE is
not efficient enough where we could end up with (CH,CH)
or (CM,CM) strategies, which is not desirable for the system
and could lead to performance degradation of the network.

2) Correlated Equilibrium (CE):
We propose a new solution concept, Correlated Equilibrium,

for the clustering game that maximizes the outcome and pre-
vents undesirable action. The correlated equilibrium concept
is more general than NE and was first proposed by Nobel
Laureate Robbert J. Aummann [11].

Thus far, the players’ strategies are independent where each
player chooses her mixed strategy independently without any
communication with each other. According to MSNE solution,
the player will gain equal payoffs. However, if the player
can avoid ending up with the same strategies by following
agreement/external signal for the coordination of actions be-
tween the nodes, the outcome will maximize, and efficiency
of the system will be higher. The strategy profile is selec-
tion according to joint distribution. This resulting distribution
strategy profile called Correlate Equilibrium, where it is best
interest for the player to follow the external signal and conform

with the recommended strategy. Thereby, the players have no
incentive to deviate to gain higher payoff.

The essence of a correlated equilibrium [9] is that when all
players follow the external recommendation signal, no player
has a unilateral incentive to deviate from the trusted authority’s
recommendation to achieve higher payoff. Moreover, that
signal could be generated by an arbitrator which is seen as
a virtual entity and does not depend on the system. The
correlated equilibrium is defined as:

Definition of correlated equilibrium [9]: A probability
distribution π is a correlated equilibrium of the game G if
and only if, for all i ∈ N , si ∈ Si and s−i ∈ S−i:∑

s−i∈S−i

π(si, s−i)[ui(s
′
i, s−i)− ui(si, s−i)] ≤ 0 (12)

where π(si, s−i) denotes the joint probability distribution of
players. The action for user i and its opponents are si and s−i
The inequality (12) implies that the expected payoff of player
i playing the recommendation strategy si at the CE is greater
than or equal to the expected payoff that could be received
for choosing any other strategy s′i. In other words, choosing
action s′i instead of si cannot obtain a higher expected payoff
for user i.

3) Linear Programming Solution :
For the proposed game, we investigate a linear optimization

method to calculate the optimal CE [9]- [11]. We drive the
CE linear system for 2-player game as shown in Table I,
then we implement the same mechanism for N players. A
correlated strategy pair in the game is given by the CE
joint probability distribution which presented as 4-dimensional
vector π = (p1, p2, p3, p4), where p1 + p2 + p3 + p4 = 1. A
correlated strategy pair means that the strategy pair (CH,CH)
is played with probability p1, strategy pair (CH,CM) is
played with probability p2, strategy pair (CM,CH) is played
with probability p3, and strategy pair (CM,CM) is played
with probability p4.

In order to find the egalitarian equilibrium for the game,
we formulate the game as linear programming and define the
objective function f to find the optimal strategy CE as:

f = max
p

∑
i∈N

Ep(ui) (13)

such that

{
∀si, s′i ∈ Si, and, i ∈ N,
p(si, s−i)[ui(s

′
i, s−i)− ui(si, s−i)] ≤ 0

where Ep(.) is the expectation over p. Then, the constrains
for CE for 2-player game are:
u1(CH,CH)p1 + u1(CH,CM)p2 ≥

u1(CH,CH)p1 + u1(CM,CM)p2 (14)

u1(CM,CH)p3 + u1(CM,CM)p4 ≥
u1(CH,CH)p3 + u1(CH,CM)p4 (15)

u2(CH,CH)p1 + u2(CM,CH)p3 ≥
u2(CH,CM)p1 + u2(CM,CM)p3 (16)

u2(CH,CM)p2 + u2(CM,CH)p4 ≥
u2(CH,CH)p1 + u2(CM,CH)p4 (17)

By solving the above inequalities, the obvious solution
for the CE probability distribution is: p1 = p4 = 0 and
p2 = q, p3 = 1 − q which maximizes the sum of the



TABLE II: An example of payoffs matrix for 2-player

CH CM
CH 1

6 , 1
6

1
6 , 1

2
CM 1

2 , 1
6 0 , 0

expected payoffs for all players. Thus, the CE joint probability
distribution π = (0, q, 1 − q, 0). Thereby, we eliminated the
possibility of selecting the same strategy for the players.

For N -player and 2-strategies clustering game, we can
derive the linear system and CE constrains according to (13)
in the same manner for obtaining polynomial time algorithms
for optimizing over CE. The inequalities constraints grow
exponentially with the number of players [12]. This result
proves that following the external signal is self-enforcing,
since cooperation arises naturally from the rules of the game.
In addition, it must be considered that the external signal is
not binding and players can ignore it. Thus, we guarantee the
convergence of equilibrium to CE by utilizing the no-regret
learning algorithm discussed in section IV-E.

D. Fairness and Efficiency (Pareto Optimality)

In this subsection, we will discuss the fairness and efficiency
of all the proposed solution game (i.e., Pure and mixed strategy
NE compared with CE), as well as evaluate the proposed
CE solution by applying the Pareto optimality concept. Pareto
Optimality is the objective measurement of efficiency in game
theory.

The two pure strategy NE in th clustering game (i.e.,
(CH,CM) and (CM,CH)) are unfair where one node
always gets higher payoff than other. However, the MSNE
for the game achieves the fairness where the expected utility
of the players are equal. For sake of clarity, let us assume
the example of payoffs matrix for 2-players as shown in
Table II. The MSNE for the clustering game is the distribution
(α = 1

3 , β = 2
3 ) over the set of pure strategies. The expected

utility for both players will be equal when they mix their
strategies according to MSNE. As per equations (8)-(11), the
expected utility is 0.16. Additionally, the chance of none
of the players being a clusterhead ( 2

3 ×
2
3 = 44.4%), and

the chance of ending up with more than one clusterhead at
the same time is ( 1

3 ×
1
3 = 11.1%). This means that there

is always a high chance of an undesirable action occurring
with MSNE (i.e., 55%) either for lost communication with
base station in the case of absence the clusterhead, or energy
wastage in case of more than one clusterhead in the cluster.
Accordingly, the MSNE is an inefficient equilibrium to the
game. In the same manner, the joint probability distribution
of CE for the game shown in Table II is (π = {0, 12 ,

1
2 , 0})

which is calculated by the inequalities (13-17). The expected
utility for the players is 1

2 × ( 1
6 + 1

2 ) = 0.33, which is greater
than the expected utility of MSNE as well as the payoffs of
always be a clusterhead. Furthermore, another way to prove
the efficiency of the CE is to analyze the Pareto optimality of
the solution. The main idea of Pareto optimality is to maximize
the outcome of the game where no player can be better off
without making some player worse off. In other words, an
outcome of the game is Pareto efficient if there is no other
outcome where some player’s utility can be increased without

Fig. 1: Geometrical representation of the set of attainable
payoffs under CE for Table II

making some other player’s utility worse [13]. Figure 1 is
the convex hull graphical presentation of the game considered
in Table II. The 4 points in the figure represent the possible
payoffs. The maximum payoffs attainable by a node must
occur at one of the vertices of the convex hull (i.e., (CH,CM)
and (CM,CH)), which are the pure Nash equilibria. It can
be noticed that the set of Pareto optimal solution is the line
between these two payoff vectors, whereas a mix between
these two vectors is the proposed CE solution for the game.

Therefore, the CE is Pareto optimal (i.e., efficient) solution,
where it maximizes the expected utility besides achieving
fairness Moreover, it must be noticed that the CE is less
expensive than NE computationally, where computing CE only
requires solving a linear program. In contrast, NE requires
finding its fixed point completely to solve it.

E. No-Regret Learning Algorithm for CE N-player game

We provide how the strategies of the players reach an
equilibrium without needing the trust arbitrators, where the
recommended signal is not binding and the players are free
to ignore it. In order for the convergence to occur to the set
of correlated equilibria in the long run, we use the learning
process called regret matching (no-regret) algorithm [14]. The
goals of the algorithm is to minimize the regret of each player
and reach 0 as time t → ∞. Adjustment of the probability
distribution is guided by the average difference (i.e., regret
measures) based on the history of the actions that have been
played by all players from past periods.

In particular, assume that the game is played repeatedly
through time t ∈ {1, 2, 3, 4, ....T}, and player i selects the
distribution (pt)i over action S. Each player in each period
decides either to continue playing the same probability distri-
bution (pt)i for next time (t+1) or switch to other probabilities
(p′t)i that are proportional to the difference “regrets” relative to
the current probability. Precisely, for any two distinct actions
s, s′ ∈ Si of player i selecting according to a probability
distribution pit(s) and pit(s

′), respectively, the regret of the
player i at time T for not playing s′i is calculated as:

Rit(si, s
′
i) = max{Di

t(si, s
′
i), 0} (18)

where the average difference is given by:

Di
t(si, s

′
i) =

1

t

t∑
τ=1

[ui(s
′
i, s
−i
τ )− ui(sτ )] (19)

For next period (t+1), the probability pit+1(si) and pit+1(s′i)
for player i to take action si and s′i, respectively, are computed
as:



TABLE III: Regret-matching (no-regret) learning algorithm

Initialization: Set the probability for taking action
si,∀s ∈ Si for the node i arbitrarily, pit=1(si)

for t = 1, 2, 3, 4...
for each node i
Calculate payoff uit for playing with probability pit(si)
Find the regret Ri

t(si, s
′
i) of the player i for not

playing s′i up to time t (equations (18-19)).
Find the probability distribution action for t+ 1
(equation (20)) as:

1. Update pit+1(si) to take action si
2. Calculate pit+1(s′i) to take action s′i

end
end

{
pit+1(s′i) = 1

µ
Rit(si, s

′
i),

pit+1(si) = 1− pit+1(s′i).
(20)

where the probability pit+1(si) is a linear function of regret,
and µ is an independent parameter of time and history, and
is sufficiently large. Choice of µ > 2M i guarantees that the
probability of playing the same strategy as in the last period
is positive, where M i is an upper bound on |ui(.)|. In each
period, the player selects an action and observes the loss/gain
to adjust the probability of choosing an alternative action for
higher payoff until the strategies converge to CE. Table III
shows the summary of no-regret learning algorithm.

V. STRATEGY SPACE REDUCTION FOR COPA

Though all the nodes in the network should contribute to
the network by serving as clusterhead from time to time,
there would always be some nodes that are less suitable to
take on the added responsibility. At any point of time, there
would be better suited nodes and ‘weaker’ nodes. The weaker
nodes might have less energy remaining, lower transmission
capabilities, or lower computing power. Therefore, instead of
having all nodes participate in the game and exploring the
entire strategy space for finding the equilibrium solution, we
argue that certain weaker nodes can safely be excluded for
clusterhead consideration.

In order to select the group of nodes that will contribute
into the game at any time instance, we consider two system
parameters– transmission energy consumption and residual
energy, and combine them using a weighed average. If ωn

represents the weighted average of node n, then
ωn = w1Dn + w2En (21)

where Dn is the summation of the distances of all neighbours
of node n (i.e., Dn =

∑
n∈N
{dist(n, n′)}), and En denotes how

much energy the node consumed till current time. w1 and w2

are the weighting factors.
Based on ωn, it is relatively easy to categorize a node

as ‘suitable’ or ‘unsuitable’ just by comparing ωn to some
threshold value. As for determining the threshold, a simple
way would be to use some local cluster parameters, like the
mean of the weighted average of all the nodes. Additionally,
the threshold is updated periodically and sent to all cluster
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Fig. 2: Number of nodes that participate in our proposed
clustering game (CoPA).

members by the same arbitrator (i.e., virtual entity) responsible
for generating the external signal for CE solution.

The suitable nodes participate in the repeated clustering
game by playing the game in rounds. After each round, all
nodes update ωn and compare with the new threshold for
the next round. This exclusion policy has two main features:
i) the weighted metric is generic enough and can accommodate
any number of node parameters, ii) prohibits unsuitable nodes
to participate in the game, thereby reducing the strategy space
and speeding up the equilibrium convergence.

VI. PERFORMANCE EVALUATION

In order to test the veracity of of the correlated equilibrium
in determining the clusterhead set in a wireless sensor network,
we resort to simulation experiments.
A. Simulation Setup

We simulate a system of N sensor nodes using MAT-
LAB. In order to measure the performance of our clustering
algorithm, we compare it with two clustering techniques:
probability-based [15] and CROSS [2]. The probability of
being a clusterhead is fixed in the probability-based, and is
set to 0.05 as in [15]. The probability of being a clusterhead
in CROSS is defined as p = 1 − ω

1
N−1 , 0 < ω < 1; where

the value of ω is set as per [2]. For CoPA, the probability of
being a clusterhead or a cluster member depends on the CE
probability distribution for the clustering game as presented
in Section IV. We assume that the base station is located
outside the sensing field. The sensor nodes form a connected
network i.e., we get a single component graph. The rest of the
simulation parameters are presented in Table IV. Furthermore,
we identify three metrics that reveal the performance of
any clustering technique: network lifetime, average residual
energy, and amount of data sent to the sink (throughput).

TABLE IV: Simulation Parameters

Parameters Value
Initial energy 0.5 J

Transmit and receive energy 50 nJ
Transmit to the base station 100 nJ

Data aggregation energy 5 nJ

B. Simulation Results
In order to show the relative performance of exclusion

policy of CoPA, Fig. 2 presents the number of nodes that
contributes to the game for a various number of sensor nodes
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Fig. 5: Amount of data sent to the BS

(i.e., N = 20, ..., 140). We notice that the average number
of participated nodes is less than the total number of sensor
nodes (i.e., 55% − 65%). This is because of the exclusion
policy (Section V), which decides which sensor nodes will be
excluded from being considered in the game. Therefore, the
strategy space will significantly reduce and the equilibrium
convergence will speed up.

Fig. 3 shows the average residual energy of the sensor
nodes for the three clustering methods. The number of nodes
considered in this experiment was 50. For the probability-
based and CROSS clustering, the average residual energy
for the nodes drops to almost 0 in 100 and 150 rounds,
respectively. CoPA on the other hand has a steadier energy
degradation. Fig. 4 exhibits the network lifetime for various
number of sensor nodes (i.e., N = {40, ...140}) for the
probability-based, CROSS, and CoPA. We define network
lifetime as ‘the lifespan of the node that first among all the
others deplete its energy’ [2]. We consider a node’s energy is
exhausted when 99% of the sensors’ initial energy has been
consumed. CoPA achieves longer lifetime than the other two
for any number of nodes.

We also measure the throughput of the system according to
the amount of data sent to the sink (base station), where the
only way to reach the base station is through the clusterheads.
In the absence of any clusterhead, the data cannot be relayed
to the base station. In Fig. 5, we present the amount of data
that was sent to the base station. It is interesting to observe that
CoPA has the highest value, which is 5% and 20% more than
the probability-based and CROSS, respectively. Consequently,
CoPA ensures of determination of clusterheads in each round
and guarantees a pathway for the sensed data to be sent to the
base station. As a final comment, the absence of clusterhead
could occur continuously in the probability-based and CROSS
because of their dependence on the node’s probability for
playing as a clusterhead, whereas CoPA guarantees of the
existence of clusterheads in every round till the network dies.

VII. CONCLUSIONS

In this work, we proposed a cost and payment clustering
techniques for wireless sensor networks. CoPA determines the
cost of being a clusterhead or a cluster member and provides
the probability distribution for the correlated equilibrium. In
addition, we proved that the correlated equilibrium achieves
better performance than the pure and mixed strategy Nash
equlibria in term of efficiency and fairness. We also proposed

a simple way to determine a node’s eligibility to participate in
the clustering game based on a flexible weighted function.
The unsuitable nodes are prohibited; thereby reducing the
strategy space and speeding up convergence to the equilibrium.
Simulation results show that CoPA outperforms probability-
based and CROSS clustering in terms of residual energy,
network lifetime, and throughput.
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