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Abstract—A broad range of applications has led to various
wireless sensor networks (WSNs) with different design consid-
erations. Limited battery power is one of the most challenging
aspects of WSN protocol design, and, therefore, energy efficiency
has long been the focus of research. One of the most common ap-
proaches for energy conservation is to alternate each sensor node
between sleep and wake-up states. In this paper, we propose ADP,
an adaptive energy efficient approach that meets the requirement
of low energy consumption and, at the same time, considers the
underlying dynamic traffic load. ADP enhances energy efficiency
by dynamically adjusting sensor nodes’ sleep and wake-up cycles.
ADP utilizes a cost function intended to strike a balance between
the conflicting goals of conserving energy (waking up as rarely
as possible) and at the same time minimizing sensed events’
reporting latency (waking up as frequently as possible). It also
incorporates a feedback mechanism that constantly monitors
residual energy level and the importance of the event to be
reported, as well as predicts the next sensing event occurrence
time. Simulation experiments with different traffic loads have
shown that ADP improves energy efficiency while keeping latency
low.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are prevalent in many
fields, including but not limited to civil engineering, medical,
environment, and industrial automation. The design of a wire-
less sensor network depends specifically upon the application
for which it is being deployed. Among all others, energy
efficiency is regarded as one of the most critical concern
because of the limited battery life of the sensor nodes. Most
of the recent studies have focused on how to maximize
the lifetime of the system without sacrificing other factors
such as latency and throughput. In this paper, we focus on
extending the sensor node’s lifetime by saving on energy
consumption and keeping latency low. In wireless sensor
network applications, the underlying sensing traffic load can
vary during different times of the day, and each node may
have a varied density of participating in activities based on
its location in the system, e.g., whether the node is close to
the sink or not. Consequently, different sensor nodes have
different levels of energy consumption during sensing and
communication. The level of energy consumption is one of
the most important factors for sensor networks because sensor
nodes usually have very limited battery capacity. In addition,
replacing the sensor’s battery is a maintenance nightmare, and
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in some applications replacing the battery is impossible [1].
Dissipation of sensor energy results in quickly diminishing the
network lifetime and can affect network performance.

Sensor sleeping is an effective technique to prolong a
network lifetime by reducing idle listening. The technique to
schedule a sensor’s sleep and wake-up cycle can be used in
any level of the protocol stack, such as the application layer,
routing layer, and medium-access control layer. In sleep mode,
a node turns off the radio and goes to sleep in order to save
energy instead of staying idle. Control of a sensor waking
up can be internal or external [2]. In this paper, we follow
the internally controlled wake-up policy, wherein the node
periodically wakes up (duty cycling).

Optimization is a sufficient method that can be dynamic or
static. Both of the optimization methods assist designers in
meeting the application requirements: the static remains fixed
for the WSN’s lifetime and is appropriate for stable environ-
mental events. However, dynamic optimization is appropriate
for changing application requirements and real environmental
events; in addition, dynamic methods provide more flexibility
and accuracy [3]. The current approaches to sleep and wake-
up scheduling are mostly static, i.e., a node always wakes up
after a fixed sleep time. This static approach is not efficient
since it does not consider the dynamic occurrence behaviors of
most underlying sensing events. In addition, a static approach
does not consider the critical factor of the remaining energy
resource of a sensor node. It is intuitively clear that when a
sensor node has less and less remaining battery, it should be
more cautious and conservative in waking up to report sensing
data in order to prolong its lifetime. Therefore, a more energy-
efficient sleep and wake-up scheduling scheme should be an
intelligent and dynamic approach.

In this paper, we introduce a dynamic and adaptive data
sensing scheduling approach for each sensor node wake-
up/sleep time called ADP (an adaptive energy efficient ap-
proach). It aims to adjust the optimal sleeping period of each
sensor node adaptively according to three feedback factors:
the prediction of the next occurrence time of an underlying
sensing event, the sensor node’s residual battery, and the
importance of reporting an event for this sensor node. ADP is
designed to maximize the network lifetime and save on energy
consumption by optimizing the duty cycle of the node. When
the frequency of the sensing traffic is high, the node should
be adjusted to wake up more frequently in order to quickly



report each sensing event without much latency. When the
sensor node has a low battery level, its sleeping time will be
adjusted to be longer in order to extend its lifetime. When the
sensing event is more critical to report, the node should wake
up more frequently in order to reduce the reporting latency.

Sensors have two major operations: sensing and forwarding
data [4]. In this paper, we focus on producing an adaptive
and energy-efficient scheduling approach for sensors to sense
and report events. It can be readily combined with many prior
developed systems that focus on energy-efficient data forward-
ing in order to have a complete energy efficient scheduling
system that covers both data sensing and data forwarding
operations of sensors. Our simulation experiments show that
ADP could greatly extend a sensor node lifetime comparing
with a well known scheduling base approach [5] without
introducing much latency which is especially suitable for a
scenario where sensing events occur with varying frequency.

The rest of this paper is organized as follows: section II
describes some of the related works. We present the ADP
approach in section III. We test our approach during the
simulation, and we discuss the results in section IV. Section
V is the discussion and conclusion of the paper.

II. RELATED WORK

Most wireless sensor networks’ protocols have been based
on application requirements. Recently, researchers have been
using sleeping techniques for reducing energy consumption in
all layers of the protocol stack in wireless sensor networks
[2]. Previous works have shown a broad range of the use
of sleeping techniques in different categories. The sleeping
techniques can be divided into scheduled wake-up, radio
controlled wake-up, and environmentally controlled wake-up.
Scheduled wake-up is divided based on time synchronization,
where it could be synchronous or asynchronous duty cycling
[2] [6]. EE-MAC (Energy Efficiency MAC protocol) [7] is our
previous work that introduced an energy efficient medium-
access control protocol by achieving a low duty cycle in
order to improve energy consumption through a mathematical
optimization model while transitioning between sleep and an
active state. ER-MAC [8] is a TDMA based MAC protocol
that selects the sleep and wake schedules based on a node’s
criticality by letting the more critical nodes sleep longer. The
sleeping techniques can also save energy in routing protocols
as some studies showed [2]. [9] proposed a sleeping multipath
routing approach that can be applied to any routing protocol by
selecting the minimum numbers of disjoint paths to meet the
reliability demands and by turning off the rest of the sensor
nodes. GTC (Geographical Topology Control protocol) [10]
extends the network lifetime by dividing the network into
zones and selecting one active node in each zone.

Sensors have two major operations: sensing and forward-
ing data [4]. In ADP, we focus on producing an energy-
efficient way to sense an event based on the feedback. Other
researches, such as PW-MAC [11], focus on the forwarding
and transmission of sensed data. PW-MAC [11] is an energy-
efficient predictive wakeup MAC protocol that enables senders

to accurately predict receivers wakeup times. The protocol
minimized idle listing and overhearing by enabling a sender to
rendezvous with a receiver quickly according to the predicted
receiver wake-up. It could be beneficial to combine PW-
MAC technique and our proposed approach together to have
a complete energy efficient scheduling system.

III. PROPOSED ADP APPROACH

A. Wake-up Technique

Waking a node up and putting it to sleep periodically instead
of keeping the node awake all the time saves significant
amount of energy. A periodical scheduling technique could be
synchronized, where all the nodes will adjust to the periodic
wake-up time synchronously. On the other hand, the schedul-
ing technique could be asynchronous, where each node’s
wake-up time does not require any synchronization, and each
node can adjust its own periodic wake-up time independently
[12]. Some existing approaches [5] use a base approach of
wake-up technique that gives a node a fixed period of sleeping
time throughout the node’s lifetime. In the base approach, the
node wakes up after a fixed amount of time, which is not
suitable with dynamic changing sensing events. As an example
application, sensors for monitoring a bridge condition may
have very dynamically changing sensing activities to monitor
and report throughout a day. During rush hours, sensor nodes
will be busy and need to be awake more frequently to report
sensing events than during nighttime, when vehicular traffic
over the bridge is dramatically decreased. Clearly, fixed wake-
up time scheduling depletes sensor nodes an unnecessary high
amount of energy at night, and at the same time, sensor nodes
may not wake up quickly enough during rush hours in order
to sense and report events on time. In contrast, our approach
adapts the node waking up scheduling based on the occurrence
frequency of environmental events.

Although ADP runs on each sensor node independently,
if some sensor nodes have exactly the same settings and
observe the same sequence of events, executing ADP on
these sensors will enable them to have identical sleep/wake-
up scheduling, i.e., they are in synchronous mode. On the
other hand, two sensors are in asynchronous mode if they have
different settings or observe different events. Therefore, we can
say that ADP is a hybrid approach by combining synchronous
and asynchronous modes.
B. Criticality of Sensor Node

Unlike existing methods, where all nodes are treated equally
all the time, we treat each node in ADP according to its own
conditions (which we call criticality), and adapt its sleep/wake-
up duty cycle with underlying sensing traffic density. We
measure the criticality of a sensor node by the following two
parameters:

• Residual energy of a sensor node: each node has its own
residual energy level, and it varies according to the node
activity and past energy consumption during its lifetime.

• Importance of reporting data: due to the application
requirements, types of sensing data, and node locations,



Fig. 1: Illustration of sensing events arrival. Ti is the inter-
arrival time between the i-th event and the previous (i− 1)-th
event; λi is the estimated Poisson arrival rate based on Ti
where λi = 1/Ti.

each node could have different values measuring the
importance of reporting events it needs to sense and
report.

C. Sensing Event Modeling and Prediction

The static behavior of the traditional system under varying
sensing event density may increase the energy wastage and
could reduce the efficiency of a sensor network. The main
idea of ADP is to adjust the optimal sleeping time for each
node and to adapt the network sensor node to be appropriate
with an environmental dynamic-changing traffic load. In ADP,
a sensor node will stay awake for a certain amount of time. If
there is no event to report, it will go back to sleep immediately;
if there is an existing event to report, it will report the data
and then go back to sleep. Its next wake-up time is determined
according to the node’s criticality and the prediction of the next
event arrival time.

We assume that the underlying sensing events follow the
Poisson Distribution with the dynamically changing rate λt at
time t. We estimate λt in each sleep/wake-up cycle based on
previous observations of event arrivals (i.e., the Ti sequence)
and the prior estimated value of λt (denoted by λt′ ). We apply
the idea of estimating the new arrival rate via a low-pass filter
[13].

λt = (1− α)λi + αλt′ (1)

where λi is the Poisson arrival rate based on the most recent
arrival event, λt is estimated arrival rate, and α is a filter gain
coefficient to adjust how smooth we want the estimated λt.

Here we explain how we obtain λi based on the most recent
observation. Figure 1 illustrates sensing events occurrence over
time. We denote Ti as the inter-arrival time between the i-
th event and the previous (i − 1)-th event. Since we assume
that sensing events follow the Poisson arrival process, and
sensor nodes know when each previous event happened, we
use the observed most recent inter-arrival time Ti to estimate
the current time Poisson process rate λi, and, hence, we set
the value of λi as:λi = 1

Ti
.

For reader’s convenience, we list the main mathematical
notations used in this paper in Table I.
D. Feedback Optimization

1) Feedback Optimization Model for General Distribution
Our proposed approach is based on optimizing a cost func-

tion with the goal of minimizing the cost of energy consumed
while matching with traffic density and maintaining an ac-
ceptable latency. The optimization tries to achieve a balanced

Notation Definition
λt The dynamic Poisson arrival rate for sensing events

at time t
λt Estimated Poisson arrival rate at time t for sensing

events
Ti Inter-arrival time between the (i − 1)-th event and

i-th event
ts Sleeping time
ξ Remaining battery of sensor node
r Critical factor of remaining battery of sensor node,

r = 1
ξ

c Factor of importance of reporting sensed event
P Prob. of wasting energy when a sensor node wakes

up without any event to report
Q Prob. of finding event occurred during the sensor

node’s prior sleep period
dts Average sensing data report latency

w1, w2 Weight factors in cost function, where w1+w2 = 1
t∗s Optimal sleeping time

TABLE I: List of Notations

trade-off between the energy consumption and sensing data
report latency. There are two types of cost that we consider in
our formula:

• The cost of energy wastage when the node wakes up
without any sensing event happening during its previous
sleep period.

• The cost of sensing data report latency when the node
is sleeping during the occurrence of an event, thus intro-
ducing a time delay when it wakes up and reports the
event.

The first case happens when the occurrence frequency of
underlying sensing events is low and the node wakes up too
often. The node will consume an undesired amount of energy
in that awake time without reporting any events. In the second
case, the cost of latency becomes high when the occurrence
frequency of underlying sensing events is high, and the node
wakes up less frequently. In this case, the sensor node sleeps
longer than desired, whereas there are some events the node
needs to report more responsively. Let random variable X
denote the inter-arrival time between sensing events. We define
the general formula of the combined cost function as:

f(ts) = w1rP + w2cdtsQ (2)

where r represents the criticality of remaining battery of a
sensor node, c represents the importance of a sensed event,
and ts is sleeping time. The average latency is represented by
dts . P = Prob.(X > ts) is the probability of wasting energy
when waking up in the absence of a sensing event (first case);
Q = Prob.(X ≤ ts) is the probability of finding an event
occurrence during the prior sleep period (second case).
w1 and w2 are weight factors that should be set up by

the network operator to achieve a balance between energy
saving and data report latency. The cost function shows that
the absolute values of w1 and w2 do not matter; what matters
is the relative values of these two weight factors. Thus we can
let

w1 + w2 = 1 (3)

In order to find the optimal sleeping time t∗s based on the
cost function (2), we just need to take partial derivative of the



cost function against ts and set it equal to zero, as ∂f
∂ts

∣∣∣∣
t∗s

= 0.

2) Feedback Optimization Model based on Poisson Distri-
bution

The above optimization model based on general distribution
is theoretical and abstract. In order to illustrate how we
can utilize this feedback optimization model in many sensor
network applications, in this section we describe the traffic
arrival process as a Poisson distribution and explain how to use
the feedback optimization model to improve energy efficiency
in a concrete way.

Poisson distribution is the most suitable distribution for
the majority of sensor network applications. If there exist
a large number of entities each of which has a very small
probability to independently generate sensing events, then such
event occurrence can be modeled accurately by a Poisson
distribution. One example of such an application is in using
sensors to monitor the condition of a bridge and the traffic
flowing over it. There could be millions of vehicles in the
local area of the bridge, but the probability of any one vehicle
going over the bridge at a specific time is very small. A similar
instance can be found in sensors monitoring wildlife, where
the population of wildlife is large, but the probability of a
specific animal appears in the specific area for the sensor to
detect is small.

As we described above, X represents the inter-arrival time
between sensing events. Since we assume the sensing event
occurrence follows the Poisson process with a dynamically
changing rate λ, this random variable X follows exponential
distribution with the same rate λ. (X > ts) denotes the
absence of a sensing event during the time interval [0, ts].
The probability of absence of sensing event when waking up
is Prob.(X > ts), which is given by the following formula:

P = Prob.(X > ts) = e−λts (4)

Similarly, the probability of event occurrence during the
sleep time interval [0, ts] is:

Q = Prob.(X ≤ ts) = 1− e−λts (5)

Because of the following Poisson process Theorem: “Given
that N(t = n), then those n arrival times S1, ..., Sn have
the same distribution as the order statistics corresponding to
n independent random variables uniformly distributed on the
time interval (0, t)” [14], we define the average latency dts in
our cost function (2) as half of the sleeping time dts = ts

2 .
In addition, we define the critical factor of remaining battery

of a sensor node as r = 1
ξ , where ξ is the fraction of remaining

battery energy as compared with the battery’s full capacity.
The importance of sensed events parameter c is specified
manually by the operator for each sensor node according to
its location and sensing data type.

After deriving the formulas for all the variables, the cost
function becomes:

f(ts) = [w1
1

ξ
(e−λts)] + [w2c

ts
2

(1− e−λts)] (6)

In the above cost function equation, the first part is the cost
of wasting energy, and the second part represents the cost
of sensing data report latency. In order to drive the optimal
sleeping time t∗s , we need to take partial derivative of the cost
function (6) in terms of ts. Since we don’t know the true
value of λ, we use the estimated λt from Equation (1) in the
cost function. The optimal sleeping time t∗s should make the
derivative equal to zero, which means that t∗s can be derived
from the following equation:

∂f

∂ts

∣∣∣∣
t∗s

=
w2c

2
+ e−λtt

∗
s [
w2ct

∗
sλt

2
− λtw1

ξ
− w2c

2
] = 0 (7)

Since Equation (7) does not have a closed-form solution,
we apply Bisection algorithm [15] for estimating the root of
the Equation (7). When a node wakes up, its value of r =
1
ξ updates based on the current remaining battery energy. In
addition, the estimated event arrival rate λt updates by the
estimation Equation (1), then ADP relies on Equation (7) to
determine the node’s optimal sleeping time t∗s for the next
round.

Algorithm (1) shows the procedure of the proposed adaptive
scheduling approach. It contains three steps in each wake-up
cycle: prediction, updating, and optimization. The first step,
Prediction, is used to predict when will the next sensing event
will happen based on the event’s statistical model and the
previous events observation. It will make the system adaptive
to the dynamics of sensing events. The second step, Updating,
is to update all the parameters in the cost function (6). The
last step, Optimization, is to derive the optimal next-round
sleeping time t∗s based on the partial derivative (7).

IV. PERFORMANCE EVALUATION

A. Simulation Setup

In this section, we evaluate our approach by comparing
ADP with the base approach which applies the same technique
but without adaptation, i.e., the sensor nodes in the base
approach have a fixed period of sleeping time. We conduct
the experiments that test ADP and the base approach over
three different underlying sensing event densities in order to
illustrate the impact of underlying dynamic sensing event load
on the sensor nodes’ behavior. In the first scenario, sensing
event occurrence follows a constant rate of Poisson process
all the time. In the second scenario, the sensing event Poisson
arrival rate λ is increased from λlow to λhigh rate in the middle
of the simulation. The last scenario is the reverse of the second
scenario, where λ starts from λhigh and decreases to λlow rate
in the middle of the simulation.

We simulate our sensing approach and base approach in
Matlab. To be realistic, we use the parameter values of TelosB
Mote, a low-power wireless sensor module, as battery energy
model as specified in [16]. That is to say, the value of
power consumption in the wake-up state is 1.8mA, and power
consumption in sleep state is 5.1µA. We set up 10 nodes and
classify the nodes into three groups, i.e., nodes in each group
have the same settings and observe/report the same sequence



Result: Each node computes the optimal sleep time
period t∗s for the next sleep-wake duty cycle,
determines the next wake-up time

Initialization: The network operator sets the values of
data importance factor c for each sensor node and sets
the value of weight factors w1 and w2 in order to achieve
a balance between energy saving and data report latency.

begin
When a node wakes up

1.Prediction: estimate the new λ̄t using Equation 1
based on past observations and prior estimated

value
2.Updating: update the feedback information, i.e.,

derive r = 1
ξ and λt

3.Optimization: derive t∗s based on Equation 7
by using the feedback value of r = 1

ξ and the
estimated Poisson arrival rate λt

if event has happened during prior sleep period do
Action (i.e., report the event)

end if
Schedule the node next wake-up time:
{next-wake-up-time=current-time + t∗s}
The node goes to sleep

end

Algorithm 1: Procedure of ADP

of sensing events. As explained at the end of Section III.A,
sensors in each group will achieve exactly the same scheduling
by running ADP independently, as if they synchronize with
each other. Node 1 to 3 are in Group 1; Node 4 to 6 are in
Group 2; and Node 7 to 10 are in Group 3. In order to get an
accurate results, we average the simulation results over 100
runs.

The proposed ADP approach tries to achieve a balanced
trade-off between energy saving and data report latency. As
shown in the cost function (6), the network operator can adjust
the relative values of the two weight factors w1 and w2 to
achieve energy saving while maintaining an acceptable sensing
data report latency. For example, by increasing the value of
w2/w1, the operator can reduce data report latency at the cost
of saving less amount of energy. We define the latency as the

(a) Percentage number of nodes
that have less than 20% of en-
ergy.

(b) Energy Efficiency = ratio of
the sum of nodes remaining en-
ergy to the sum of nodes initial
energy.

Fig. 2: Performance of ADP compared with the base approach
at the end of time.

time interval between occurrence of sensing event and node
wake up to report the event. Furthermore, there is no universal
amount of delay that can be defined as acceptable latency
because it purely depends on the application and should define
by the operator. We assume the maximum acceptable latency
range for our simulation is [4− 6s].

Based on the two performance metrics of remaining battery
energy and data report latency, we evaluate system perfor-
mance from two perspectives: first, by the end performance,
which illustrates the behavior of sensor nodes at the end of
the simulation time; second, by the temporal performance that
shows the behavior of the sensor nodes along their lifetime in
three experiments. In Experiment I, the value of sleeping time
for the base approach is ts = 1/λavg . In Experiment II, we
set different values of sleeping time for the base approach,
which is ts = 1/λhigh, which will make the nodes wake
up more frequently. In order to show the nodes’ behavior in
terms of latency and energy saving while assuming a lower
acceptable amount of latency, in Experiment III, we keep the
value of sleeping time for the base approach as ts = 1/λavg
but with a higher value of w2 in order to reduce the latency.
The performance of ADP is tested using the following metrics:

• Energy Efficiency: ratio of summation of remaining en-
ergy for all nodes divided by the summation of initial
energy of all nodes.

• Average remaining energy for all nodes along the sim-
ulation time and remaining energy for each node at the
end of simulation.

• Average latency for all nodes along the simulation time
and average latency for each node at the end of simula-
tion.

• Percentage number of nodes that have less than 20% of
energy remaining as compared with their initial energy.

B. Simulation results
1) Impact of sensing event density
For the three different sensing event loads as mentioned

above, we measure the energy efficiency and percentage
number of nodes that have less than 20% of energy at the
end of the simulation for both our proposed ADP approach
and the base approach. In the base approach, the value of
sleeping time is set to be 1/λavg . Figure 2(a) illustrates the
percentage ratio of the number of nodes that have less than
20% of energy level over the three scenarios. This figure shows
that all nodes consume more than 80% of their energy at the
end of the simulation in the base approach, while 44% of the
nodes in ADP still has more than 20% of their energy in the
first scenario and 60%, 87% of the nodes still has more than
20% in the second and third scenarios, receptively. Figure 2(b)
illustrates the measurement of energy efficiency for ADP and
the base approach. Compared with the base approach, ADP
achieves a higher energy efficiency for all cases. As the sensing
event load changes in the second and third scenarios, ADP still
has a higher energy efficiency than the base approach.

2) Energy saving and latency
This section represents the results of three experiments ,

as mentioned above, over the second scenario of underlying



(a) Energy and latency at the end of simulation time. (b) Average of energy and latency during the simulation time.

Fig. 3: Performance of ADP and the base approach in Experiment I.(when the value of fixed sleeping time ts for base approach
is 1/λavg .) ADP gains a high amount of energy saving and keeps latency well below the acceptable latency. In (b), change
the middle of the curves refer to the density change of sensing event.

(a) Energy and latency at the end of simulation time. (b) Average of energy and latency during the simulation time.

Fig. 4: Performance of ADP in Experiment II. (The results similar to Fig. 3 when the value of fixed sleeping time ts for base
approach is 1/λhigh instead of 1/λavg (waking up more frequently).) ADP also gains a higher amount of energy saving.

sensing events; in this second scenario the sensing event
Poisson arrival rate λ is increased from λlow to λhigh rate at
the middle of the simulation. The results show the performance
of ADP and the base approach. The following figures 3, 4, and
5 demonstrate the behavior of sensor nodes for saving energy
and latency over a dynamic changing underlying sensing event
load. Figure 3 represents the performance of ADP and the base
approach when the value of fixed sleeping time in the base
approach is 1/λavg. The percentage of remaining energy and
the amount of latency for each node at the end of simulation
are showed in figure 3(a).

To study the impact of factor c, the importance of reporting
data, the first group of Node 1 to 3 has the largest value of c,
while the third group of Node 7 to 10 has the smallest value of
c. The proposed ADP approach makes nodes consume less en-
ergy than the nodes in the base approach, and the latency stays
low within the acceptable range set. Figure 3(b) demonstrates
the measurement of the average of percentage of remaining
energy and latency for nodes throughout the simulation. The
graph of average percentage of remaining energy shows the
amount of energy saved in ADP is more than that in the base
approach by 40%. When the sensing event density changes
in the middle of simulation, energy consumption rate in the
ADP approach also changes correspondingly. In addition, the

average of latency in our approach decreases in the middle of
simulation according to the density change of sensing events.

Figure 4 illustrates the experiment’s results when the value
of ts in the base approach is 1/λhigh. Figure 4(a) and 4(b)
represent the percentage of remaining energy and latency for
each node at the end of the simulation, and the average
of remaining energy and latency throughout the simulation,
respectively. In this instance, we notice that our approach also
achieves high performance for saving energy by 45% and
keeps latency under the maximum acceptable latency.

To show the nodes’ behavior in term of energy saving and
latency with more emphasis on reducing the latency than
on energy saving, we test ADP and the base approach by
changing the parameters of weighted factors in the experiment
III. The results of the average energy remaining and latency
are represented in Figure 5, and follow the same trend as the
previous experiment for saving energy. The figure shows that
our approach saves 15% energy when compared to the base
approach. It achieves a good improvement in latency, and it
could even achieve less latency when compared with the base
approach.

V. DISCUSSION AND CONCLUSION

Our feedback optimization model is not restricted to the
Poisson process. The model of sensing event occurrence could



(a) Average of energy during
time.

(b) Average of latency during
time.

Fig. 5: Performance of ADP and the base approach in Exper-
iment III (ts = 1/λavg , and this experiment emphasizes more
on reducing latency than on energy saving by setting a higher
value of w2.) Comparing with Fig. 4(b), ADP achieves better
latency performance with slight cost of energy.

follow different distributions according to the sensor network
applications, such as Pareto distribution, ON/OFF Markov
models [17], and Weibull distribution.

The values of weight factors w1 and w2 in our feedback
optimization model (2) are critical for system performance.
Their values can be configured in two ways by the sensor
network operator: first, based on the experience of the operator
and on the previous usage of the system. Second, if the
operator has the model for the sensor network application
based on previous observations, the optimal values of w1 and
w2 can be defined by running the simulation of the system
(like what we did in our performance evaluation) repeatedly
to achieve the best simulation results. Figure 6 shows this
simulation-based configuration process.

Fig. 6: Simulation-based framework for designing weight
factors w1 and w2 based on existence model.

In this paper, we have proposed a novel adaptive energy
saving approach called ADP for wireless sensors to effectively
extend the network lifetime without introducing much data
sensing report latency. The goal of ADP is to optimally
adjust sleep time for each node dynamically, and to adapt
the behavior of the sensor nodes with changing underlying
sensing event load, remaining battery level, and the importance
of sensing data. Based on the results of our experiments,
ADP achieves a significant gain in energy saving, high energy
efficiency, and desirable performance for latency over different
traffic scenarios.

REFERENCES

[1] L. C. Zhong, R. Shah, C. Guo, and J. Rabaey, “An ultra-low power
and distributed access protocol for broadband wireless sensor networks,”
IEEE Broadband Wireless Summit, vol. 3, 2001.

[2] R. Muraleedharan, I. Demirkol, O. Yang, H. Ba, S. Ray, and W. Heinzel-
man, “Sleeping techniques for reducing energy dissipation,” in The Art
of Wireless Sensor Networks, pp. 163–197, Springer, 2014.

[3] A. Munir and A. Gordon-Ross, “Optimization approaches in wireless
sensor networks,” Sustainable Wireless Sensor Networks, pp. 313–338,
2010.

[4] A. Erdogan, V. Coskun, and A. Kavak, “The sectoral sweeper scheme
for wireless sensor networks: Adaptive,” 2006.

[5] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3, pp. 1567–1576 vol.3, 2002.

[6] O. Yang and W. Heinzelman, “Modeling and performance analysis for
duty-cycled MAC protocols with applications to S-MAC and X-MAC,”
Mobile Computing, IEEE Transactions on, vol. 11, pp. 905–921, June
2012.

[7] A. Attiah, M. I. Akbas, M. Chatterjee, and D. Turgut, “EE-MAC:
Energy efficient sensor mac layer protocol,” in Local Computer Networks
Workshops (LCN Workshops), 2013 IEEE 38th Conference on, pp. 116–
119, IEEE, 2013.

[8] R. Kannan, R. Kalidindi, S. S. Iyengar, and V. Kumar, “Energy and
rate based MAC protocol for wireless sensor networks,” ACM Sigmod
Record, vol. 32, no. 4, pp. 60–65, 2003.

[9] O. Yang and W. Heinzelman, “Sleeping multipath routing: A trade-
off between reliability and lifetime in wireless sensor networks,” in
Global Telecommunications Conference (GLOBECOM 2011), 2011
IEEE, pp. 1–5, IEEE, 2011.

[10] L. Aslanyan, H. Aslanyan, and H. Khosravi, “Optimal node scheduling
for integrated connected-coverage in wireless sensor networks,” in
Computer Science and Information Technologies (CSIT), 2013, pp. 1–13,
Sept 2013.

[11] L. Tang, Y. Sun, O. Gurewitz, and D. B. Johnson, “PW-MAC: An
energy-efficient predictive-wakeup MAC protocol for wireless sensor
networks,” in INFOCOM, 2011 Proceedings IEEE, pp. 1305–1313,
IEEE, 2011.

[12] M. R. Ahmad, E. Dutkiewicz, and X. Huang, “A survey of low duty
cycle MAC protocols in wireless sensor networks,” Book Chapter in,
Wireless Sensor Network, 2009.

[13] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
Computer Communication Review, vol. 18, pp. 314–329, ACM, 1988.

[14] M. R. Sheldon, “Introduction to probability models,” 2010.
[15] D. Estep, “The bisection algorithm,” Practical Analysis in One Variable,

pp. 165–177, 2002.
[16] MEMSIC Inc, “Telmosb mote platform,” Online: http://www.memsic.

com/userfiles/files/Datasheets/WSN/telosb datasheet.pdf, 2014.
[17] Q. Wang, “Traffic analysis & modeling in wireless sensor networks

and their applications on network optimization and anomaly detection,”
Network Protocols and Algorithms, vol. 2, no. 1, pp. 74–92, 2010.


