

Open Queuing Network

Jobs arrive from external sources, circulate, and eventually depart

Closed Queuing Network

 Fixed population of *K* jobs circulate continuously and never leave
 Previous machine-repairman problem

Feed-Forward QNs

Consider two queue tandem system

$$\lambda \longrightarrow \square \longrightarrow \square \longrightarrow$$

Q: how to model?

- System is a continuous-time Markov chain (CTMC)
- State $(N_1(t), N_2(t))$, assume to be stable

$$\neg \pi(i,j) = P(N_1=i, N_2=j)$$

- Draw the state transition diagram
 - But what is the arrival process to the second queue?

Poisson in \Rightarrow **Poisson out**

 Burke's Theorem: Departure process of *M/M/*1 queue is Poisson with rate λ independent of arrival process.

Poisson process addition, thinning

- □ Two *independent* Poisson arrival processes adding together is still a Poisson ($\lambda = \lambda_1 + \lambda_2$) Why?
- □ For a Poisson arrival process, if each customer lefts with prob. p, the remaining arrival process is still a Poisson ($\lambda = \lambda_1 \cdot p$)

 For a k queue tandem system with Poisson arrival and expo. service time
 Jackson's theorem:

$$P(N_1 = n_1, N_2 = n_2, \dots, N_k = n_k) = \prod_{i=1}^{k} (1 - \rho_i) \rho_i^{n_i},$$

 Above formula is true when there are feedbacks among different queues
 Each queue behaves as M/M/1 queue in isolation

Example

T⁽ⁱ⁾: response time for a job enters queue i

$$E[T^{(1)}] = 1/(\mu_1 - \lambda_1) + E[T^{(2)}]/2$$

$$E[T^{(2)}] = 1/(\mu_2 - \lambda_2) + E[T^{(1)}]/4$$

Why?

In M/M/1:
$$E[T] = \frac{1}{\mu - \lambda}$$

UCF

9

Extension

 results hold when nodes are multiple server nodes (*M*/*M*/*c*), infinite server nodes finite buffer nodes (*M*/*M*/*c*/*K*) (careful about interpretation of results), PS (process sharing) single server with arbitrary service time distr.

Closed QNs

- Fixed population of N jobs circulating among M queues.
 - □ single server at each queue, exponential service times, mean $1/\mu_i$ for queue *i*
 - □ routing probabilities $p_{i,j}$, $1 \le i, j \le M$
 - □ visit ratios, $\{v_i\}$. If $v_1 = 1$, then v_i is mean number of visits to queue *i* between visits to queue 1

$$v_i = \sum_{j=1}^M v_j p_{j,i} \quad i = 2, \dots M$$

 $\Box \gamma_i$: throughput of queue *i*,

$$\gamma_i / \gamma_j = v_i / v_j, \quad 1 \le i, j \le M$$

Example

Open QN has infinite no. of states
Closed QN is simpler

How to define states?
 No. of jobs in each queue

UCF

13

Steady State Solution

Theorem (Gordon and Newell)

$$\pi(\vec{n}) = \frac{1}{G(N)} \prod_{i=1}^{M} \left(\frac{v_i}{\mu_i}\right)^{n_i} \quad \vec{n} \ge \vec{0}; \sum_{i=1}^{M} n_i = N$$

where $\vec{n} = (n_1, \ldots, n_M)$, and G(N) is a constant chosen so that $\sum \pi(\vec{n}) = 1$.

□ For previous example, v_i?

$$v_1 = 1, v_2 = 3/4, v_3 = 1/4$$

Mean Value Analysis (MVA) Algorithm

- Key idea: a job that moves from one queue to another, at time of arrival to queue sees a system with the same statistics as system with one less customer.
 - We only consider single server nodes

MVA Algorithm

System with population of n jobs

- $\bar{N}_i(n)$ average number of jobs at node i
- $\bar{T}_i(n)$ average response time at node i
- $\gamma_i(n)$ thruput of node i

 $0. \quad \bar{N}_i(0) = 0, \quad 1 \le i \le M \qquad initialization$

for n = 1 to N do

1.
$$\bar{T}_i(n) = [1 + \bar{N}_i(n-1)]/\mu_i,$$

2.
$$\gamma(n) = n/(\sum_{i=1}^{M} v_i \bar{T}_i(n))$$

3.
$$\gamma_i(n) = v_i \gamma(n),$$
 $1 \le i \le M$
 $\bar{N}_i(n) = \gamma_i(n) \bar{T}_i(n),$ $1 \le i \le M$

UCF

Why?

'hy?

Example: File Server

 Each workstation requests file server's CPU and I/O
 service

 Workstation = job

 What is v_i?

UCF

Stan

	N	\bar{T}_1	\bar{N}_1	\bar{T}_2	\bar{N}_2	\bar{T}_3	\bar{N}_3	γ
	1	2sec		120ms.		80ms.		1/2.72
			.74		.17		.09	.368 job/sec
	2	2sec		$140 \mathrm{ms}$		$87\mathrm{ms}$		2/2.82
			1.42		.4		.18	$.709 \mathrm{j/s}$
	3	2sec		$168 \mathrm{ms}$		$94\mathrm{ms}$		3/2.952
			2.03		.68		.29	$1.02 \mathrm{j/s}$
	4	2sec		$202 \mathrm{ms}$		$103 \mathrm{ms}$		4/3.117
ds For			2.57		1.03		.4	$1.28 \mathrm{j/s}$

TRICAL ENGINEERING & COMPUTER SCIENCE