

CDA6530: Performance Models of Computers and Networks

Cliff Zou Fall 2010

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Course Information

Objectives

- What you need for performance analysis:
 - Review practical probability theory
 - Review several useful random processes
 - Basic queuing theory
 - Practical analysis techniques
 - Useful tools (Matlab, probably include NS2)
 - Basic simulation techniques
 - Discrete-time simulation
 - Discrete event simulation
 - Example cases/papers on performance modeling
 - Prepare for your own research

Course Materials

Reference textbook:

- Introduction to Probability Models, Ninth Edition by Sheldon M. Ross.
- Simulation, fouth edition by Sheldon M. Ross.
- Reference courses:
 - <u>CMPSCI673 Performance Evaluation</u>, by Don Towsley, UMass.
 - Course: <u>COMS6180 Modeling and Performance</u> <u>Evaluation</u>, by Visal Misra, Columbia Univ.
- Other references that we can find online

Course Introduction

Coursework	times	approx %
Written homework	2-3	20%
Programming projects	5	50%
Midterm exam	1	30%
Written homework		
Mainly for the first half course on probability, random		
process, queuing theory		

Programming projects

- Emphasis for the second half of the course
- Example:
 - Basic usage of Matlab, NS2
 - Internet worm propagation simulation
 - BitTorrent networking simulation
 - Internet routering simulation

UCF

Stands For Opportunity

Course Introduction

Midterm exam

 Focus on the first half content on probability, random process, queuing theory

Programming projects

Simple project: each student individual work
Complex project: Two students as a group
No final exam (to reduce workload)

Questions?