

CDA6530: Performance Models of Computers and Networks

Chapter 9:Statistical Analysis of Simulated Data and Confidence Interval

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Sample Mean

 \square R.v. X: E[X]= θ , Var[X]= σ^2 Q: how to use simulation to derive? Simulate X repeatedly \square X₁, ..., X_n are i.i.d., =_{statistic} X • Sample mean: $\bar{X} \equiv \sum_{n=1}^{n} \frac{X_i}{n}$ $E[\bar{X}] = \theta \qquad Var(\bar{X}) = \frac{\sigma^2}{2}$ n

CHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

Sample Variance

σ² unknown in simulation
 Hard to use Var(X) = σ²/n to measure simulation variance
 Thus we need to estimate σ²
 Sample variance S²:

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

• n-1 instead of n is to provide unbiased estimator $E[S^2] = \sigma^2$

Estimate Error

- Sample mean \bar{X} is a good estimator of θ , but has an error
 - How confidence we are sure that the sample mean is within an acceptable error?
- From central limit theorm:

$$\sqrt{n}rac{(ar{X}- heta)}{\sigma}\sim N(0,1)$$

It means that:

$$\sqrt{n}rac{(ar{X}- heta)}{S}\sim N(0,1)$$

Confidence Interval

□ R.v. Z~ N(0,1), for 0<
$$\alpha$$
<1, define:
□ P(Z>Z_{\alpha}) = α
□ Z_{0.025} = 1.96
□ P(-Z_{0.025} < Z < Z_{0.025}) = 1-2\alpha = 0.95
 $P(\bar{X} - z_{\alpha/2} \frac{S}{\sqrt{n}} < \theta < \bar{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}) \approx 1 - \alpha$
 $P(\bar{X} - 1.96 \frac{S}{\sqrt{n}} < \theta < \bar{X} + 1.96 \frac{S}{\sqrt{n}}) \approx 0.95$
95% confidence interval (α = 0.05) of an estimate is:
 $(\bar{X} \pm 1.96S/\sqrt{n})$

When to stop a simulation?

- Repeatedly generate data (sample) until 100(1-α) percent confidence interval estimate of θ is less than I
 - Generate at least 100 data values.
 - Continue generate, until you generated k values such that 2z_{α/2}S/√k < I
 The 100(1-α) percent confidence interval of estimate is

$$(\bar{X} - z_{\alpha/2}S/\sqrt{k}, \bar{X} + z_{\alpha/2}S/\sqrt{k})$$

Fix no. of simulation runs

- Suppose we only simulate 100 times
 k=100
- What is the 95% confidence interval?

$$(\bar{X} - z_{\alpha/2}S/\sqrt{k}, \bar{X} + z_{\alpha/2}S/\sqrt{k})$$

 $(\bar{X} - 0.196S/\sqrt{k}, \bar{X} + 0.196S/\sqrt{k})$

7

Example: Generating Expo. Distribution