
Associate Research Scholar at Princeton University

Building Correct Programs

Everyday code, written in imperative languages, is plagued by bugs: missed corner cases, logic errors, and even
compiler bugs. Formal verification techniques allow us to prove that programs always respect their specifica-
tions, offering a stronger guarantee of correctness than any other approach to debugging. Several recent pro-
jects have demonstrated that we can construct bug-free software at scale, using logic, semantics, and interac-
tive theorem proving. I will present my work in verifying two concurrent applications: a dynamic race detector
with a formal guarantee that it correctly implements a race detection algorithm, and a messaging system for
autonomous vehicles, which allows successful communication between sensors and control systems even in the
presence of malicious components. By combining detailed models of program behavior, state-of-the art logics
for memory and concurrency, and tools for constructing and checking mathematical proofs, we can formally
guarantee that real-world programs are bug-free.

William Mansky

William Mansky is an associate research scholar at Princeton University, working with Andrew
Appel in the Verified Software Toolchain group. His research centers on formally modeling the
behavior of programming languages, especially memory and concurrency behavior, and proving
correctness of real-world programs. He received his PhD from the University of Illinois at Urbana
-Champaign in 2014 under Elsa L. Gunter; his thesis described a framework for formal verifica-
tion of compiler optimizations. He then spent two years as a postdoc at the University of Penn-

sylvania, working with Steve Zdancewic on formal semantics for the LLVM intermediate representation as part of
the Vellvm project.

Hosted by: Gita Sukthankar

