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Building Correct Programs  

Everyday code, written in imperative languages, is plagued by bugs: missed corner cases, logic errors, and even 
compiler bugs. Formal verification techniques allow us to prove that programs always respect their specifica-
tions, offering a stronger guarantee of correctness than any other approach to debugging. Several recent pro-
jects have demonstrated that we can construct bug-free software at scale, using logic, semantics, and interac-
tive theorem proving. I will present my work in verifying two concurrent applications: a dynamic race detector 
with a formal guarantee that it correctly implements a race detection algorithm, and a messaging system for 
autonomous vehicles, which allows successful communication between sensors and control systems even in the 
presence of malicious components. By combining detailed models of program behavior, state-of-the art logics 
for memory and concurrency, and tools for constructing and checking mathematical proofs, we can formally 
guarantee that real-world programs are bug-free.  
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