
During a proverbial 'hack', an aƩacker oŌen exploits a vulnerability in a program, hijacks control‐flow, and executes malicous code.
Data ExecuƟon PrevenƟon (DEP), a hardware‐enforced security feature, prevents an aƩacker from directly execuƟng the injected mali‐
cious code. Therefore, aƩackers have resorted to code‐reuse aƩacks, wherein carefully chosen fragments of code within exisƟng code
secƟons of a program are sequenƟally executed to accomplish malicious logic. Code‐reuse aƩacks are ubiquitous and account for ma‐
jority of the aƩacks in the wild. On one hand, due to the wide use of closed‐source soŌware, binary‐level soluƟons are essenƟal. On
the other hand, without access to source‐code and debug‐informaƟon, defending raw binaries is hard.

A majority of defenses against code‐reuse aƩacks enforce "control‐flow integrity", a program property that requires the runƟme exe‐
cuƟon of a program to adhere to a staƟcally determined control‐flow graph (CFG) — a graph that captures the intended flow of con‐
trol within a program. State‐of‐the‐art binary‐level defenses lack in two areas. (1) Precision: Without source‐code, binary‐level defens‐
es recover a conservaƟve and approximate CFG that accommodates several illegiƟmate edges along with all the legiƟmate edges. By
launching pracƟcal aƩacks that leverage the illegiƟmate edges within the approximate CFG, aƩackers have highlighted the need for
more precise CFG. (2) Incremental deploy‐ability: A complete CFG includes inter‐module control flows, which are unknown unƟl the
load Ɵme. Therefore, such defenses can either protect all the modules used by a program, or none of them. ParƟal protecƟon leads to
unaffordable false alarms.

In this talk, I will first provide an overview of state‐of‐the‐art in code‐reuse aƩacks and binary‐level defenses. Then, I will present two
of my works that address precision and deploy‐ability of defenses: The first work improves precision of CFI in C++ binaries, and
the second work introduces Stack‐Pointer Integrity (SPI), a program integrity model that defends against code‐reuse aƩacks by enforc‐
ing integrity of stack pointer.

Aravind Prakash is a PhD candidate in Dept of Electrical Engineering and Computer Science at Syracuse University. His speciality is sys‐
tem security with emphasis on program analysis. He has authored mulƟple papers in top‐Ɵer security conferences. He holds a Master
of Science degree from University of Miami, FL, and a Bachelor of Engineering from VTU, India.

Presented by the CS Division

Hosted by: Dr. Sheau‐Dong Lang

