
Page 1 of 4

Computer Science Foundation Exam

August 8, 2020

Section I A

DATA STRUCTURES

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section I A". Please put your

name, UCFID and NID on the top left hand corner of each document you

submit. Please aim to submit 1 document, but if it's necessary, you may

submit 2. Clearly mark for which question your work is associated with. If

you choose to edit this document, please remove this cover page from the

file you submit and make sure your name, UCFID and NID on the top left

hand corner of the next page (first page of your submission).

Question # Max Pts Category Score

1 5 DSN

2 10 DSN

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2020 Data Structures Exam, Part A

Page 2 of 4

1) (5 pts) DSN (Dynamic Memory Management in C)

Suppose we have a structure to store information about cases of juice. The structure is shown below: the

name of the juice in the case is statically allocated. The structure also contains the number of containers

of juice in that case. Complete the function below so that will takes 2 parameters: the name of a juice and

an integer. Your function should create a new case of juice by allocating space for it, copying in the

contents specified by the formal parameters into the struct and returning a pointer to the new case. You

may assume that the pointer new_name is pointing to a valid string storing the name of a juice for which

memory has already been allocated and is 127 or fewer characters.

#include <string.h>

 #include <stdlib.h>

struct juice_case {

 char name[128];

 int num_bottles;

};

struct juice_case* create_case(char *new_name, int new_number) {

 // allocate space for a new case – 2 points

struct juice_case *new_case = malloc(sizeof(struct juice_case));

 // add the name for the case – 1 point

 strcpy(new_case->name, new_name);

 // add the number for the case – 1 point

 new_case->num_bottles = new_number;

 // return the case – 1 point

 return new_case;

}

Summer 2020 Data Structures Exam, Part A

Page 3 of 4

2) (10 pts) ALG (Linked Lists)

Suppose we have a linked list implemented with the structure below. The function below takes in a

pointer, head, to a linked list which is guaranteed to store data in strictly ascending order. If the list

doesn't contain the value 3, the function should create a struct node storing 3 in its data component, insert

the node so that the listed pointed to by head stores its data, including 3, in strictly ascending order, and

returns a pointer to the front of the resulting list. If a node already exists storing 3 in the list pointed to by

head, then return head and make no changes to the list.

typedef struct node {

 int data;

 struct node* next;

} node;

node* addValue3(node* head) {

 if (head == NULL || head->data > 3) {

 node* tmp = malloc(sizeof(node));

 tmp->data = 3;

 tmp->next = head;

 return tmp;

 }

 if (head->data == 3)

 return head;

 node* iter = head;

 while (iter->next != NULL && iter->next->data < 3)

 iter = iter->next;

 if (iter->next != NULL && iter->next->data == 3)

 return head;

 node* tmp = malloc(sizeof(node));

 tmp->data = 3;

 tmp->next = iter->next;

 iter->next = tmp ;

 return head;

}

Grading: 1 pt per slot, record an integer grade. If two slots are partially correct, you may just take

1 point off.

Summer 2020 Data Structures Exam, Part A

Page 4 of 4

3) (10 pts) DSN (Stacks)

Suppose we have implemented a stack using a linked list. The structure of each node of the linked list is

shown below. The stack structure contains a pointer to the head of a linked list and an integer, size, to

indicate how many items are on the stack.

typedef struct node {

 int num;

 struct node* next;

} node;

typedef struct stack {

 struct node *top;

 int size;

} stack;

The generalized Towers of Hanoi game can be represented by numTowers stacks of integers, where the

values in each stack represent the radii of the disks from the game for the corresponding tower. Recall that

a valid move involves taking a disk at the top of one stack and placing it on the top of another stack, so

long as that other stack is either empty or the disk currently at the top of the other stack is bigger than the

disk about to be placed on it. Complete the function below so that it takes in an array of stacks representing

the contents of the towers in Towers of Hanoi and prints out all of the valid moves that could be made

from that state, but doesn't move anything. You may assume that the array of stacks passed into the

function represent a valid state in a Towers of Hanoi game, where the value stored in the stack is the

corresponding disk radius and the disk radii range from 1 to n, for some positive integer n. Assume that

you have access to the following functions that involve a stack and that they work as described:

// Returns the value stored at the top of the stack pointed to by s. If stack pointed to by s is empty, a

// random value is returned.
int peek(stack *s);

// Returns 1 if the stack pointed to by s is empty, and 0 otherwise.
int isEmpty(stack *s);

void printValidMoves(stack towers[], int numTowers) {

 for (int i=0; i<numTowers; i++) {

 for (int j=0; j<numTowers; j++) {

 if (isEmpty(&towers[i])) continue;

 if (isEmpty(&towers[j]) || peek(&towers[i]) < peek(&towers[j]))

 printf("Valid Move from tower %d to tower %d.\n", i, j);

 }

 }

}

Grading: 3 pts first slot, 3 pts second slot, 4 pts last slot

Page 1 of 4

Computer Science Foundation Exam

 August 8, 2020

Section I B

DATA STRUCTURES

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section I B". Please put your

name, UCFID and NID on the top left hand corner of each document you

submit. Please aim to submit 1 document, but if it's necessary, you may

submit 2. Clearly mark for which question your work is associated with. If

you choose to edit this document, please remove this cover page from the

file you submit and make sure your name, UCFID and NID are on the top

left hand corner of the next page (first page of your submission).

Question # Max Pts Category Score

1 5 ALG

2 10 ALG

3 10 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2020 Data Structures Exam, Part B

Page 2 of 4

1) (5 pts) ALG (Binary Search Trees)

Consider the following tree traversals:

 Pre-order: 7 2 9 14 16

 Post-order: 2 16 14 9 7

 In-order: 2 7 9 14 16

Is it possible for a single binary search tree to give rise to all three of those traversals? If so, draw the

tree. If not, clearly explain why it’s not possible.

Solution:

 7

 / \

 2 9

 \

 14

 \

 16

Grading:

5/5 for correct answer.

3/5 if they’re very close (e.g., just one value is out of place)

0/5 otherwise (including if they try to explain that this isn’t possible)

Summer 2020 Data Structures Exam, Part B

Page 3 of 4

2) (10 pts) ALG (Heaps/Hash Tables)

Consider the following hash table and the strings it already contains, along with the hash function being

used to insert strings into the table. Assume the table only stores alphabetic strings.

Note: The length of the hash table is 11.

llama xenon want yurt mop nook uvula

0 1 2 3 4 5 6 7 8 9 10

 // This function (which is pretty bad for hashing strings in the real

 // world, by the way) assumes str is non-NULL and non-empty.

 int hash(char *str)

 {

 // Note: This converts letters on the range 'a' through 'z' or

 // 'A' through 'Z' to integers on the range 0 through 25.

 // For example: 'a' -> 0, 'b' -> 1, ..., 'z' -> 25.

 return (tolower(str[0]) – 'a')%11;

 }

For each of the following questions, refer to the original hash table above. For example, in part (b), refer

to the original table – not the table that contains the string you come up with in part (a).

a. (2 pts) Give a string that, if inserted into the table above using quadratic probing, would cause

us to encounter the minimum number of collisions possible.

Any string starting with: e, h, i, k, p, s, t, or v (… which lead to cells 4, 7, 8, and 10)

Grading: all or nothing

b. (2 pts) Give a string that, if inserted into the table above using quadratic probing, would cause

us to encounter the maximum number of collisions possible.

Any string starting with: c, f, n, q, or y (… which lead to cells 2 and 5) Grading: all or nothing

c. (5 pts) Give all the alphabetic letters someone could have used to start their string in order to

give a correct answer for part (b) of this problem.

c, f, n, q, y (no need to also list uppercase letters) Grading: 1 pt each

d. (1 pt) Give a string that, if inserted into the table above using linear probing, would cause us to

encounter the maximum number of collisions possible.

 Any string starting with: a, l, or w (… which lead to cell 0) Grading: all or nothing

Summer 2020 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) ALG (AVL Trees)

List the ranges of all the integer values that would cause a double rotation to occur if inserted into the

following AVL tree (as opposed to a single rotation or no rotation at all). (For example: “-10 through -5

and any value greater than 93.”) You may assume we do not allow the insertion of duplicate values into

the tree. Note: A double rotation can alternately be described as a restructuring where, out of the

three nodes that need to move structurally, the new root node was previously two levels below the

node that needs to be restructured.) These cases are also called the C-A-B and A-C-B cases.

 34

 / \

 20 48

 / \ \

 12 25 93

 /

 -10

Solution:

All values from -9 through 11

All values from 49 through 92

Grading:

First, give +5 for each of the two ranges above. (Note: We can accept “-10 through 12” and “48 through

93,” since the problem specifies that duplicates would not be inserted.)

If a range is given but incomplete by more than an off by one error, award 2 out of 5 points. (Something

like -3 to 7.)

If a range is given with an off by one error, take off 1 pt per off by one error on an essentially correct

range out of the 5 pts.

If a range is given in addition to correct ranges, subtract 2 pts for an extraneous range being given,

capping any score at zero.

So, if no valid ranges are given, then automatically 0 of 10. If one valid range is given in full and two

invalid ranges are given, this would be 5 - 2 - 2 = 1 point. If just one valid range is given, that would be

5 points, If one valid range is given with one off by one error, that's 4 points, etc.

Page 1 of 4

Computer Science Foundation Exam

 August 8, 2020

Section II A

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section II A". Please put

your name, UCFID and NID on the top left hand corner of each document

you submit. Please aim to submit 1 document, but if it's necessary, you

may submit 2. Clearly mark for which question your work is associated

with. If you choose to edit this document, please remove this cover page

from the file you submit and make sure your name, UCFID and NID are

on the top left hand corner of the next page (first page of your

submission).

Question # Max Pts Category Score

1 10 ANL

2 5 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Summer 2020 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ANL (Algorithm Analysis)

There is a very long corridor of rooms, labeled 1 through n, from left to right. It is reputed that in the

very last room, room n, there is the Treasure of the Golden Knight. Unfortunately, you don't know what

n is equal to. Whenever you are in a particular room, you are allowed to ask questions of the form, "Is

there a room 2k slots to the right of my current location?", where k is a non-negative integer. For a fee,

Knightro, an omnipresent, omnipotent, omniscient knight, will answer your question correctly, with

either "yes" or "no." After you ask 1 or more questions from a single room, Knightro will move you, for

free, to any of the rooms you asked a question about for which he replied "yes." Your goal is to get to

room n by asking as few questions as possible, to reduce the fee that you pay Knightro. Devise a

strategy to find the value of n and clearly outline this strategy. How many questions, in terms of n, will

your strategy use, in the worst case? Answer, with proof, this last question with a Big-Oh bound in terms

of n. (Note: Any strategy that works will be given some credit. The amount of credit given will be

based on how efficient your strategy is, in relation to the intended solution.)

One strategy that is fairly efficient, is as follows:

1. When in room 1, ask the questions for each value of k successively, until receiving the first no

answer. Thus, if there is a room 2m rooms to the right, but NOT 2m+1 rooms to the right, stop asking

questions and ask to be moved to the room 2m rooms to the right, room 1+ 2m.

2. If there was no "yes" response at all during step 1, then the answer is n = 1. If this isn't the case, go

onto the next steps.

3. Create a variable called cJump and set it equal to m.

4. Let cur equal the current room number you are in.

5. While cJump is greater than equal to 0, do the following:

 a. Ask the question, "Can I move to the right by 2curJump number of rooms?

 b. While curJump is non-negative and the answer to question in step a is no, subtract 1 from

 curJump.

 c. If curJump is non-negative, update cur by adding 2curJump to it (asking Knightro to move you)

Step one takes O(log n) steps, since we know that 2m <= n and 2m+1 > n. Solving the former inequality

shows that m <= log2n, and we ask m+1 questions, we've asked O(log n) questions in this step.

Steps 2, 3 and 4 take O(1) time. Even though the loop for #5 has a loop in it, since curJump never gets

incremented, the total number of times Steps 5a and 5b run is m+1. (It's always guaranteed to decrement

once every time it runs due to addition with powers of two.) Thus, the total run time of step #5 is O(log

n) as well.

Adding, we get a run-time of O(log n).

Grading: 10 pts max O(lg n) strategy, 9 pts max O(lg2n) strategy, 4 pts max O(n) strategy. Within

a strategy, award points for the explanation and run-time proof as follows (7/3, 6/3, 2/2). If there is

a run time better than O(n) but not as good as O(lg2n), give something in between 4 and 9 points.

Summer 2020 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (5 pts) ANL (Algorithm Analysis)

An algorithm to find a particular value takes O(log(n)) time where n is the total number of values. On a

data set of n = 230 it took 1.2 seconds to find the desired value. How many milliseconds will it take to

find a value in a data set with n = 220? (Note: for ease of computation, you may use a logarithm with

base 2.)

The runtime is in seconds can be expressed as 𝑐log2(𝑛) where c is some constant. We can find the c by

plugging in n = 230 with the answer as 1.2 seconds. We find that

1.2𝑠 = 𝑐 log2(230)

1.2𝑠 = 𝑐 log2(230)

1.2𝑠 = 30𝑐
1.2𝑠

30
= 𝑐

To solve for the question we plug 220 for n.

𝑎𝑛𝑠𝑤𝑒𝑟 =
1.2𝑠

30
log2(220)

=
1.2𝑠

30
× 20

=
2 (1.2𝑠)

3

= .8𝑠

Convert to milliseconds

𝒂𝒏𝒔𝒘𝒆𝒓 = 𝟖𝟎𝟎𝒎𝒔

Grading:

Find c, 2 pts.

Plugging in 220, 2 pts.

Correct answer by converting, 1 pts.

Summer 2020 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations)

Using the fact that if 𝑥 ≠ 1, then ∑ 𝑥𝑖 =
𝑥𝑛+1−1

𝑥−1

𝑛
𝑖=0 , for positive integers n, determine the following

summation, in terms of n (assume n is a positive integer):

∑ 𝟒𝒊

𝟑𝒏

𝒊=𝟐𝒏+𝟏

First, notice that we can factor out 42n+1 from each term of our summation. Next, we can re-index the

summation by noticing that inside the new sum, the terms are 40 + 41 + … + 4n-1. Formally, we set j = i -

(2n+1).

∑ 𝟒𝒊

𝟑𝒏

𝒊=𝟐𝒏+𝟏

= 𝟒𝟐𝒏+𝟏 ∑ 𝟒𝒊−(𝟐𝒏+𝟏)

𝟑𝒏

𝒊=𝟐𝒏+𝟏

= 𝟒𝟐𝒏+𝟏 ∑ 𝟒𝒋

𝒏−𝟏

𝒋=𝟎

= 𝟒𝟐𝒏+𝟏(
𝟒𝒏 − 𝟏

𝟒 − 𝟏
)

=
𝟒𝟑𝒏+𝟏 − 𝟒𝟐𝒏+𝟏

𝟑

Another way to solve the sum is to take the sum from i=1 to 3n, and subtract from it the same sum form

i=1 to 2n. If we proceed in this way, we'll get
43𝑛+1−1

4−1
−

42𝑛+1−1

4−1
, after evaluating both sums. Notice that

both terms equal to one-third (first -, second +) cancel out and that we arrive at the same answer as

above.

Grading Method #1: 3 pts factor out, 3 pts rewrite sum, 3 pts apply formula, 1 pt final answer

(note, final answer can be factored form instead.)

Grading Method #2: 2 pts split sum, 3 pts apply formula first sum, 3 pts apply formula second

sum, 2 pts algebra to get to final answer

Page 1 of 4

Computer Science Foundation Exam

 August 8, 2020

Section II B

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

Directions: You may either directly edit this document, or write out your

answers in a .txt file, or scan your answers to .pdf and submit them in the

COT 3960 Webcourses for the Assignment "Section II B". Please put

your name, UCFID and NID on the top left hand corner of each document

you submit. Please aim to submit 1 document, but if it's necessary, you

may submit 2. Clearly mark for which question your work is associated

with. If you choose to edit this document, please remove this cover page

from the file you submit and make sure your name, UCFID and NID are

on the top left hand corner of the next page (first page of your

submission).

Question # Max Pts Category Score

1 5 DSN

2 10 ALG

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Summer 2020 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (5 pts) DSN (Recursive Coding)

Write a recursive function that returns the sum of all of the even elements in an integer array vals, in

between the indexes low and high, inclusive. For example, for the function call sumEven(vals, 3, 8) with

the array vals shown below, the function should return 24 + 8 + 10 = 42, since these three numbers are

the only even numbers stored in the array in between index 3 and index 8, inclusive.

index 0 1 2 3 4 5 6 7 8 9

vals[i] 15 13 28 19 24 8 7 99 10 14

int sumEven(int vals[], int low, int high) {

 if (low > high) return 0; // 1 pt base case.

 int res = 0; // 2 pts assign variable based

 if (vals[low]%2 == 0) // on current term.

 res = vals[low];

 return res + sumEven(vals, low+1, high); // 2 pts return and

 // recursive call

}

Summer 2020 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (10 pts) ALG/DSN (Sorting)

(a) (5 pts) Consider running a Bubble Sort on the array shown below. How many swaps will execute for

the duration of the algorithm running on the array shown below? Explain how you got your answer.

97 16 45 63 13 22 7 58 72

Reasoning:

On iteration #1, 97 will swap with all items, for a total of 8 swaps.

On iteration #2, 63 will swap with 13, 22, 7 and 58, for a total of 4 swaps.

On iteration #3, 45 will swap with 13, 22 and 7 for a total of 3 swaps.

On iteration #4, 16 swaps with 13, and 22 will swap with 7 for a total of 2 swaps.

On iteration #5, 16 will swap with 7, for a total of one swap.

On iteration 36, 13 will swap with 7, for a total of one swap.

Adding up, we get 8 + 4 + 3 + 2 + 1 + 1 = 19 swaps.

A perhaps, easier way to solve this is to realize that all swaps are between inverted elements, namely,

pairs of items that are out of place in the original array, meaning that in the pair the larger item appears

first. Thus, we can count all the inversions:

(97, 16), (97, 45), (97, 63), (97, 13), (97, 22), (97, 7), (97, 58), (97, 72),

(16, 13), (16, 7),

(45, 13), (45, 22), (45, 7),

(63, 13), (63, 22), (63, 7), (63, 58)

(13, 7)

(22, 7)

which is 19 inverted pairs.

Grading: 4 pts for correct answer, 1 pt for reason. If answer is 18 or 20 and reason is valid, take

off 1 pt, if answer is 17 or 21 and reason is valid, take off 2 pts.

(b) (5 pts) List the best case run time of each of the following sorting algorithms, in terms of n, the

number of items being sorted. Assume all items being sorted are distinct.

 (i) Insertion Sort O(n) Grading: 1 pt each

 (ii) Selection Sort O(n2)

 (iii) Heap Sort O(nlgn)

 (iv) Merge Sort O(nlgn)

 (v) Quick Sort O(nlgn)

Summer 2020 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Backtracking)

A “unique” positive integer of n digits is such that no two adjacent digits differ by less than 2.

Specifically, given an n digit number, d0d1…dn-1, where d0 is the most significant digit, (and thus, this

one digit can’t be 0), |di – di+1| ≥ 2 for all i (0 ≤ i ≤ n-2). Consider the problem of printing out all

“unique” positive integers of n digits via backtracking, in numerical order. Fill in the code below to

complete the task. (To run the code, one would have to call printWrapper with their desired parameter.)

#include <stdio.h>

#include <math.h>

void print(int number[], int n);

void printWrapper(int n);

void printRec(int number[], int k, int n);

void printWrapper(int n) {

 int* array = malloc(sizeof(int)*n);

 printRec(array, 0, n);

 free(array);

}

void printRec(int number[], int k, int n) {

 if (k == n) {

 print(number, n) ; // Grading: 1 pt

 return ; // Grading: 1 pt

 }

 int start = 0;

 if (k==0) // Grading: 1 pt

 start = 1 ; // Grading: 1 pt

 for (int i=start; i < 10 ; i++) { // Grading: 1 pt

 if (k > 0 && abs(number[k-1]-i)<2) // Grading: 2 pts

 continue;

 number[k] = i ; // Grading: 2 pts

 printRec(number, k+1, n) ; // Grading: 1 pt

 }

}

void print(int number[], int n) {

 for (int i=0; i<n; i++)

 printf("%d", number[i]);

 printf("\n");

}

