
Page 1 of 4

Computer Science Foundation Exam

May 18, 2019

Section I A

DATA STRUCTURES

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2019 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Suppose we have an array of structures containing information about Cartesian points. The struct shown

below contains two integers, one for the x coordinate and one for the y coordinate. For this problem, write

a function, createPoints, to create some random Cartesian points with each coordinate set to a random

integer in between 0 and 10, inclusive.

createPoints takes in the number of points to be created, numPoints. Your function should dynamically

allocate an array of numPoints CartPoints structs and set each of their x and y coordinates with

pseudorandom integer values in between 0 to 10, inclusive. You may assume that the random number

generator has been seeded already. Your function should return a pointer to the array that was created and

initialized.

typedef struct CartPoint {

 int x;

 int y;

} CartPoint;

CartPoint* createPoints(int numPoints) {

 int i;

 // LHS = 1 pt, 3 pts RHS

 CartPoint *somePoints = malloc(sizeof(struct CartPoint) * numPoints);

 for(i=0; i<numPoints; i++) { // 1 pt

 somePoints[i].x = rand() % 11; // 2 pts

 somePoints[i].y = rand() % 11; // 2 pts

 }

 return somePoints; // 1 pt

}

Summer 2019 Data Structures Exam, Part A

Page 3 of 4

2) (10 pts) ALG (Linked Lists)

Suppose we have a queue implemented as a doubly linked list using the structures shown below with

head pointing to node at the front of the queue and tail pointing to the node at the end of the queue.

struct node {

 int data;

 struct node *next, *prev;

}

struct queue {

 int size;

 struct node *head, *tail;

}

Write an enqueue function for this queue. If the queue is already full, return 0 and take no other action. If

the queue has not been created yet, return 0 and take no other action. If the queue isn't full, enqueue the

integer item into the queue, make the necessary adjustments, and return 1. Since there is no fixed size,

the queue will be considered full if a new node can't be allocated.

int enqueue(queue *thisQ, int item) {

 struct node *newNode = malloc(sizeof(struct node)) ; // 1 pt

if(thisQ == NULL) return 0;

 if(newNode == NULL) return 0;

 newNode->data = item; // .5 pts

newNode->next = NULL; // .5 pts

thisQ->size = thisQ->size + 1; // .5 pts

 if(thisQ->head == NULL) {

 newNode->prev = NULL; // .5 pts

 thisQ->head = newNode; // .5 pts

thisQ->tail = newNode; // .5 pts

 return 1;

}

 newNode->prev = thisQ->tail; // 2 pts

 thisQ->tail->next = newNode; // 2 pts

 thisQ->tail = newNode; // 2 pts

 return 1;

}

Grading Note: Please count total points and round down to record an integer, so 8.5 gets recorded

as 8, and 8.0 also gets recorded as 8.

Summer 2019 Data Structures Exam, Part A

Page 4 of 4

3) (5 pts) DSN (Stacks)

Convert the following infix expression to postfix using a stack. Show the contents of the stack at the

indicated points (1, 2, and 3) in the infix expression.

 1 2 3

 A + (B - C * (D + E)) - F * G

 +

 (

 *

- -

((

+ + -

 1 2 3

Resulting postfix expression:

A B C D E + * - + F G * -

Grading: 1 point for each stack, 2 points for the whole expression (partial credit allowed.)

Page 1 of 4

Computer Science Foundation Exam

 May 18, 2019

Section I B

DATA STRUCTURES

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: ___

UCFID: ___

NID: ___

Question # Max Pts Category Score

1 10 ALG

2 5 ALG

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Summer 2019 Data Structures Exam, Part B

Page 2 of 4

1) (10 pts) ALG (Binary Trees)

What does the function call solve(root) print out if root is pointing to the node storing 50 in the tree

shown below? The necessary struct and function are provided below as well. Please fill in the blanks

shown below. (Note: the left pointer of the node storing 50 points to the node storing 5, and all of the

pointers shown correspond to the direction they are drawn in the picture below.)

typedef struct bstNode {

 int data;

 struct bstNode *left;

 struct bstNode *right;

} bstNode;

int solve(bstNode* root) {

 if (root == NULL) return 0;

 int res = root->data;

 int left = solve(root->left);

 int right = solve(root->right);

 if (left+right > res)

 res = left+right;

 printf("%d, ", res);

 return res;

}

18, 7, 7, 11, 18, 36, 3, 8, 13, 50,

Grading: 1 pt per correct number in the correct slot.

Summer 2019 Data Structures Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Hash Tables)

Insert the following numbers (in the order that they are shown from left to right) into a hash table with

an array of size 10, using the hash function, H(x) = x mod 10.

234 344 483 564 814

Show the result of the insertions, assuming any hash collisions are resolved through quadratic probing.

Index Value

0 814

1

2

3 483

4 234

5

344

6

7

8

564

9

Grading: Give 1 pt for each value listed in the correct spot. If more than one value is in a single

spot, give 0 pts for all values in that particular slot automatically.

Summer 2019 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Tries)

In many word games, the player is given some tiles with letters and must form a word with those tiles.

Given a trie that stores a dictionary of valid words and a frequency array storing information of the tiles a

player has, determine the number of unique words she can form with those tiles. Complete the function

shown below to solve the given problem. Note: the entry in freq[i] represents the number of tiles with the

letter 'a' + i. (Hint: recursing down the trie is exactly like placing a tile down, which means updating

the freq array. When you have finished "trying a tile" you have to put it back into your pool, which

means editing the freq array again.)

typedef struct TrieNode {

 struct TrieNode *children[26];

 int flag; // 1 if the string is in the trie, 0 otherwise

} TrieNode;

int countWords(TrieNode* root, int freq[]) {

 int res = root->flag ; // 1 pt

 int i;

 for (i=0; i<26; i++) {

 if (freq[i] == 0 || root->children[i] == NULL) // 4 pts

 continue;

 freq[i]-- ; // 1 pt

 res += countWords(root->children[i], freq) ; // 3 pts

 freq[i]++ ; // 1 pt

 }

 return res;

}

Page 1 of 4

Computer Science Foundation Exam

 May 18, 2019

Section II A

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Score

1 10 ANL

2 5 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Summer 2019 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (10 pts) ANL (Algorithm Analysis)

Consider storing a table with indexes 0 to N-1, where N = k2, for some positive integer k, that starts with

all entries equal to 0 and allows two types of operations: (1) adding some value to a particular index, and

(2) querying the sum of all the values in the table from index 0 through index m, for any positive integer

m < N. One way to implement a "table" to handle these two operations is to store two separate arrays,

groups, of size k and freq, of size N. freq stores the current value of each index in the table. For the

array groups, index i (0 ≤ i < k) stores the sum of the values in freq from index iN to index (i+1)N-1.

(For example, if N = 25, then groups[2] stores the sum of the values of freq, from freq[10] through

freq[14], inclusive.

Determine, with proof, the run-time of implementing operation (1) on this table using this storage

mechanism and determine, with proof, the run-time of implementing operation (2) on this table using

this storage mechanism. (For example, if N = 100 and we had a query with m = 67, to get our answer we

would add groups[0], groups[1], groups[2], groups[3], groups[4], groups[5], freq[60], freq[61],

freq[62], freq[63], freq[64], freq[65], freq[66] and freq[67]. Notice that since the ranges 0-9, 10-19,

20-29, 30-39, 40-49, and 50-59 are fully covered in our query, we could just use the groups array for

each of those sums. We only had to access the freq array for the individual elements in the 60s.)

Your answers should be Big-Oh answers in terms of N as defined above.

To add a value to a particular index in the table, we must do one update in each of our two arrays. For

example, to add x to table index i, we would do these two updates:

freq[i] += x;

groups[i/k] += x;

Namely, we are redundantly storing our information in two places, so both places must be updated. This

runs in O(1) time since each update is a simple statement/command.

A query has a different analysis since we are looking for the sum of items in the table from index 0

through some given index m, where m can range from 0 all the way to N-1. The key observation though

is that we will never look at all items in freq for any query. If our query is to a "large value" of m, by

adding multiple values in groups, we can do our work more quickly, adding k values at a time. In the

worst case, we will add at most k values from the groups array. Notice that since the groups array entries

represent table sums of k elements, when we have to add items from the freq array, we will never add

more than k of them, since if we were to have added k of them, we could have just added one more

value from the groups array. Thus, we do a maximum of k accesses to the groups array and a maximum

of k-1 accesses to the freq array, for a total of O(k) time. Since the question asks to respond in terms of

N, note that 𝑘 = √𝑁, so the run time of a query operation is O(√𝑁)

Grading: 1 pt for update answer, 3 pts for proof, 2 pts for query answer, 4 pts for proof. Latter

proof should explain why no more than k accesses of the freq array are necessary to handle any

query. Give partial for proofs as you see fit. There is no need for descriptions to be as long or

detailed as the solution given above.

Summer 2019 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (5 pts) ANL (Algorithm Analysis)

An algorithm to process a query on an array of size n takes O(√𝑛) time. For n = 106, the algorithm runs

in 125 milliseconds. How many seconds should the algorithm take to run for an input size of n =

64,000,000?

Let the algorithm with input array size n have runtime (𝑛) = 𝑐√𝑛 , where c is some constant.

Using the given information, we have:

𝑇(106) = 𝑐√106 = 125𝑚𝑠

𝑐(1000) = 125𝑚𝑠

𝑐 = .125𝑚𝑠 =
1

8
𝑚𝑠

Now, solve for the desired information:

𝑇(64 × 106) = 𝑐√64 × 106

=
1𝑚𝑠

8
× √64 × √106

=
8 × 1000𝑚𝑠

8
= 1000𝑚𝑠 = 1𝑠𝑒𝑐𝑜𝑛𝑑

Grading: 2 pts solving for c, 2 pts for plugging 64,000,000 and canceling to get to 1000 ms, 1 pt to

answer 1 second as the question requests.

Summer 2019 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Summations)

Recall that ∑ 2𝑖 = 2𝑛 − 1𝑛−1
𝑖=0 .

Use the iteration technique to find a Big-Oh bound for the recurrence relation below. Note: you may find

the following mathematical results helpful: 2𝑙𝑜𝑔3𝑛 = 𝑛𝑙𝑜𝑔32, and ∑ (
2

3
)𝑖 = 3∞

𝑖=0 . You may use these

without proof in your work below.

𝑇(𝑛) = 2𝑇 (
𝑛

3
) + 𝑂(𝑛), 𝑓𝑜𝑟 𝑛 > 1

𝑇(1) = 𝑂(1)

𝑇(𝑛) = 2𝑇 (
𝑛

3
) + 𝑐𝑛

𝑇(𝑛) = 2(2𝑇 (
𝑛

9
) + 𝑐 (

𝑛

3
)) + 𝑐𝑛

𝑇(𝑛) = 4𝑇 (
𝑛

9
) + 𝑐((

2𝑛

3
) + 𝑛)

𝑇(𝑛) = 4(2𝑇 (
𝑛

27
) + 𝑐 (

𝑛

9
)) + 𝑐((

2𝑛

3
) + 𝑛)

𝑇(𝑛) = 8𝑇 (
𝑛

27
) + 𝑐((

4𝑛

9
) + (

2𝑛

3
) + 𝑛)

Now that we've done three iterations, we can guess the form of the recurrence after k iterations:

𝑇(𝑛) = 2𝑘𝑇 (
𝑛

3𝑘
) + 𝑐𝑛(∑(

2

3
)𝑖

𝑘−1

𝑖=0

)

We want to plug in a value of k to this formula such that
𝑛

3𝑘 = 1, which occurs when 𝑛 = 3𝑘. By

definition of log, we have that 𝑘 = 𝑙𝑜𝑔3𝑛. We will bound the summation by taking it to infinity instead

of k-1:

𝑇(𝑛) ≤ 2𝑙𝑜𝑔3𝑛𝑇(1) + 𝑐𝑛(∑(
2

3
)𝑖

∞

𝑖=0

)

Now, we can use both given hints to arrive at:

𝑇(𝑛) ≤ 𝑛𝑙𝑜𝑔32 + 3𝑐𝑛 = 𝑂(𝑛)

Note that log33 = 1, so if follows that log32 < 1. Thus, the dominant term is 3cn, which is O(n).

Grading: Part A - 1 pt for restating original recurrence, 1 pt for getting to second iteration, 2 pts

for getting to third iteration, 2 pts for the correct guess of the general form after k iterations, 1 pt

for getting the appropriate value of k to plug in, 2 pts to properly simplify both terms, 1 pt to

decide which of the two terms is dominant and give the final answer.

Page 1 of 4

Computer Science Foundation Exam

 May 18, 2019

Section II B

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Summer 2019 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Consider writing a recursive method that counts the number of paths from a starting (x, y) location on the

Cartesian plane to an ending (x, y) location. Let the starting location be (sx, sy) and the ending location be (ex, ey),

where all four coordinates are integers with sx ≤ ex and sy ≤ ey, and for each step on a valid path, either 1 must get

added to the current x coordinate or 1 must get added to the current y coordinate. In addition, some given

locations are disallowed as intermediate locations on the path. Complete the function shown below to solve this

task. The input to the function takes in sx, sy, ex, ey and a two dimensional integer array named allowed, such that

allowed[x][y] is set to 1 if a path is allowed to go on coordinate (x, y) or set to 0 otherwise. It is guaranteed that

(sx, sy) and (ex, ey) are coordinates which are both inbounds and an inbounds function is provided for you. It's not

guaranteed that both (sx, sy) and (ex, ey) are valid locations to be on. In this case, the answer is 0.

#define N 10

int inbounds(int x, int y);

int numpaths(int sx, int sy, int ex, int ey, int allowed[][N]) {

 if (!allowed[sx][sy]) return 0; // 1 pt

 if (sx > ex || sy > ey) return 0; // 1 pt

 if (sx == ex && sy == ey) return 1; // 1 pt

 int res = 0 ; // 1 pt

 if (inbounds(sx+1, sy)) // 1 pt

 res += numpaths(sx+1, sy, ex, ey, allowed); // 2 pts

 if (inbounds(sx, sy+1)) // 1 pt

 res += numpaths(sx, sy+1, ex, ey, allowed); // 2 pts

 return res;

}

int inbounds(int x, int y) {

 return x >= 0 && x < N && y >= 0 && y < N;

}

Grading Note: To earn 1 pt slots, answers must be perfect. On the two pt lines, award 2 pts if all 5

slots are correct, award 1 pt if at least 2 slots are correct, the order of the if statements doesn't

matter but the inbounds check must correspond to the recursive call in its if statement.

Summer 2019 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (5 pts) DSN (Sorting)

In both Merge Sort and Quick Sort, in class we are taught to break down the sorting problem recursively

such that the base case is a subarray of size 1 (or 0). It turns out that for both, on average, the

implementation is faster if we have a base case with a subarray of size in between 20 and 50 and use a

O(n2) sort (typically insertion sort) to sort the base case subarray. Even though insertion sort is O(n2),

why does this modification to the algorithm result in a speed up for both Merge Sort and Quick Sort?

There is a great deal of overhead with recursive calls. Namely, when a new function call is executed,

memory is allocated for that function on the call stack and parameters are passed (actual values copied

into formal parameter slots), then the function can start running. A vast majority of the total # of

recursive calls in the call branches of either of these functions occurs for small arrays. For an array of

size 32, at least 31 recursive calls get made. While for large arrays an insertion sort is slower than Merge

or Quick sort, for small arrays, the insertion sort if faster because of the overhead of all of these

recursive calls. Also, insertion sort only does quick local array accesses so though it does more steps,

they are generally faster steps. Thus, if we make our base case larger, what we are doing is substituting

something that is slower (a Merge Sort or Quick Sort of 30 or so values) with something that is faster

(an Insertion Sort of 30 or so values). Naturally, if we have a set of steps in an algorithm and substitute

some of those steps with faster ones, our new algorithm is faster. The key is to set this base case right

near that tipping point of the optimal difference between the two sorts for small values.

Grading: There are quite a few ways to explain this that are valid. The crux of it is that for small

arrays, the overhead of the recursion slows the algorithm down so much, it's slower than a simple

sort that does more steps but does them without extra function calls and has quick array accesses.

Making these substitutions speeds up the overall algorithm since we are substituting something

slower for something faster. Give credit based on how complete and convincing the argument

given is. Read several responses before calibrating the grading scale.

Summer 2019 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (10 pts) ALG (Backtracking)

Consider an arbitrary permutation of the integers 0, 1, 2, …, n-1. We define the "jumps" in a

permutation array perm to be the set of values of the form perm[i] - perm[i-1], with 1 ≤ i ≤ n-1. For this

problem you will write a backtracking solution count the number of permutations that can be created

given a limited set of jumps. The function will take in arrays perm, representing the current permutation

array, used, storing which items were used in the current permutation, k, the number of fixed items in the

current permutation, jumps, an array storing the valid jumps allowed, and len, representing the length of

the jumps array. The length of the perm and used arrays will be the constant N. Note that the jumps array

contains both positive and negative values. For example, the permutation 3, 0, 2, 1 has the following

jumps: -3, 2 and -1. Complete the framework that has been given below to solve the problem.

#include <stdio.h>

#define N 10

int numperms(int perm[], int used[], int k, int* jumps, int len) {

 int i, j, res = 0;

 if (k == N) return 1; // Grading 1 pt per slot, must

 for (i=0; i<N; i++) { // be correct to earn point.

 if (used[i]) continue;

 int flag = 0;

 if (k == 0)

 flag = 1;

 else {

 for (j=0; j < len; j++)

 if (i-perm[k-1] == jumps[j])

 flag = 1;

 }

 if (flag) {

 used[i] = 1;

 perm[k] = i;

 res += numperms(perm, used, k+1, jumps, len);

 used[i] = 0;

 }

 }

 return res;

}

