Computer Science Foundation Exam

August 9, 2013

Section II A

DISCRETE STRUCTURES

SOLUTION

NO books, notes, or calculators may be used, and you must work entirely on your own.

Question	Max Pts	Category	Passing	Score
1	15	PRF (Induction)	10	
2	10	PRF (Logic)	6	
3	15	PRF (Sets)	10	
4	10	NTH (Number Theory)	6	
ALL	50		32	

You must do all 4 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and <u>not</u> graded based on the answer alone. Credit cannot be given unless all work is shown and is readable. Be complete, yet concise, and above all <u>be neat</u>.

Summer 2013

Discrete Structures Exam, Part A

1) (15 pts) PRF (Induction)

Use mathematical induction to prove the following statement is true for integers $n \ge 0$:

$$3 | n^3 - n$$
.

Solution

Base Case:

$$n = 0.$$

 $n^3 - n = (0)^3 - 0 = 0$
 $3 \mid 0 = 0$

Because 3 divides evenly into n^3 - n when n is 0 the base case is shown to be true.

1 pt for using the correct base value

2 pts for showing the base case holds.

Inductive Hypothesis: Assume for an arbitrary positive integer n = k that $3 \mid k^3 - k$ (2 pts)

Inductive Step: Prove for
$$n = k+1$$
 that $3 | (k+1)^3 - (k+1)$. (2 pts)

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$
 (1 pt)

$$= k^3 + 3k^2 + 3k + 1 - k - 1$$

= $k^3 - k + 3k^2 + 3k$

$$= (k^3 - k) + 3(k^2 + k)$$
 (1 pt)

$$3 \mid k^3 - k$$
 by the inductive hypothesis (1 pt)

$$3 \mid 3(k^2 + k)$$
 definition of divides (1 pt)

If 3 a and 3 b, then 3 (
$$a + b$$
), by the properties of divisibility. (1 pt)

Thus,
$$3 \mid (k+1)^3 - (k+1)$$
 (3 pts)

2) (10 pts) PRF (Logic)

Use the Rules of Inference and the Law of Contraposition to determine if the following argument is valid. Show each step and state which rule is being used.

$$\begin{array}{c} p \lor q \\ \neg r \rightarrow \neg p \\ r \rightarrow s \\ \neg q \\ \hline s \end{array}$$

Solution

Step	Rule	
1. p V q	Premise	(1 pt)
2. ¬ q	Premise	(1 pt)
3. p	Disjunctive Syllogism (1, 2)	(1 pt)
$4. \neg r \rightarrow \neg p$	Premise	(1 pt)
5. $p \rightarrow r$	Contraposition (4)	(1 pt)
6. r	Modus ponens (3, 5)	(2 pts)
7. $r \rightarrow s$	Premise	(1 pt)
8. s	Modus Ponens (6, 7)	(2 pts)

Summer 2013

Discrete Structures Exam, Part A

3) (15 pts) PRF (Sets)

Let A and B be finite sets of integers. Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$ by:

- a) completing a membership table AND
- b) giving a proof using logical equivalence. (Note: this means showing that

$$\{ x \mid x \in \overline{A \cap B} \} \text{ and } \{ x \mid x \in \overline{A} \cup \overline{B} \}$$

are describing the same set from logical first principles.

Solution (a)

A	В	$ar{A}$	$ar{B}$	$A \cap B$	$\overline{A \cap B}$	$\bar{A} \cup \bar{B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Award 1 point per column for a total of 5 points.

Solution (b)

$$\overline{A \cap B} = \{x \mid x \in \overline{A \cap B}\}$$

$$= \{x \mid x \notin A \cap B\}$$

$$= \{x \mid \neg(x \in A \cap B)\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

$$= \{x \mid x \notin A \lor x \notin B\}$$

$$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \{x \mid x \in \overline{A} \cup \overline{B}\}$$

$$= \overline{A} \cup \overline{B}.$$

$$(1 \text{ pt})$$

$$(1 \text{ pt})$$

$$(1 \text{ pt})$$

$$(1 \text{ pt})$$

4) (10 pts) NTH (Number Theory)

(a) (3 pts) Determine the number of integers in the set $\{1, 2, 3, ..., 15\}$ that are relatively prime with respect to 15. Note: In order for two integers a and b to be relatively prime with respect to each other, gcd(a, b) = 1. Simply list all of these integers and then give the answer to the question. Put a box around your final answer.

The following integers in the given set are relatively prime with 15:

Thus, there are 8 integers in the set relatively prime with 15. (Grading: 3 pts for a correct answer, 2 pts if off by 1, 1 pt if off by 2, 0 pts otherwise, the list of numbers isn't necessary.)

(b) (7 pts) Prove that for any integer n that can be represented as the product of two distinct primes p and q, that the number of integers in the set $\{1, 2, 3, ..., n\}$ that are relatively prime to n is (p-1)(q-1). (Hint: Use the inclusion-exclusion principle.)

There are n integers in the given set.

Of these, p of them, q, 2q, 3q, ..., pq share a common factor with q and should not be included in our final count. (2 pts)

Of these, q of them, p, 2p, 3p, ..., pq share a common factor with p and should not be included in our final count. (2 pts)

Of these 1 of them, pq is divisible by both p and q, sharing a factor with both. (1 pt)

Thus, using the subtraction principle and the inclusion-exclusion principle, we determine the total number of values in the list that don't share a common factor with n are:

$$n-p-q+1=pq-p-q+1=(p-1)(q-1)$$
. (2 pts)