
Page 1 of 6

Computer Science Foundation Exam

August 9, 2013

Section I A

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 DSN 7

2 10 ANL 7

3 10 ALG 7

4 10 ALG 7

5 10 ALG 7

TOTAL 50

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and

not graded based on the answer alone. Credit cannot be given unless all work

is shown and is readable. Be complete, yet concise, and above all be neat.

Summer 2013 Computer Science Exam, Part A

Page 2 of 6

1) (10 pts) DSN (Recursion)

a) (7 pts) Write an recursive function that takes a positive decimal integer, n, and prints it in

base b. (b is also an argument to the function, and you are guaranteed your function will only be

called with 1 < b < 10.) The function signature is:

void basePrint(unsigned int n, int b) {

 // 2 points for a base case. Note that the original

 // call is guaranteed not to have n == 0.

 if (n <= 0)

 return;

 // 3 points

 basePrint(n / b, b);

 // 2 points

 printf(“%d”, n % b);

}

// Note: Another valid base case is n < b.

b) (3 pts) What is the big-oh runtime of your function? (Give a closed-form answer, not a

recurrence relation.) Briefly justify your answer.

Two possible answers:

O(log n), because the base b representation of n has approximately logb(n) digits to be

printed. – or – O(1), because we will print the most digits with the smallest base (base 2),

and we will print at most 32 bits (a constant) in that case with this function.

1 point for a correct answer, 2 points for the explanation.

Summer 2013 Computer Science Exam, Part A

Page 3 of 6

2) (10 pts) ANL (Summations)

a) (2 pts) Write a summation that represent the value of x returned by this function:

int foo(int n)

{

 int i, x = 0;

 for (i = n – 10; i <= n; i++)

 x = x + i;

 return x;

}

 Solution: ∑
i= n− 10

n

i

 // 1 point for the limits

 // 1 point for taking the sum of i (instead of the sum of 1)

b) (6 pts) Determine a simplified, closed-form solution for your summation from part (a), in

terms of n. You MUST show your work.

 Solution: ∑ i= n− 10

n

i=∑ i= 1

n

i−∑ i= 1

n− 11

i

 // notice (n – 10 – 1) = (n – 11)

 // 2 points for breaking the summation into two parts correctly

 = [n (n + 1) / 2] - [(n – 11)(n – 10) / 2] // 3 points for applying the rule for

 // ∑ i= 1

n

i =n(n+1)/2 to get this

 // closed form.

 = [(n
2
 + n) / 2] - [(n

2
 -21n +110) / 2]

 = [(22n - 110) / 2]

 = 11n – 55 // 1 point for simplification

 Note: Try to give as much partial credit as possible for the steps they can do, even if

 they start with the wrong sum and/or the limits of their sums are off by one. (Note:

 Their solution can also just sum the corresponding arithmetic series.)

c) (2 pts) Using big-oh notation, what is the runtime of the foo() function from part (a)? Briefly

justify your answer.

 O(1), because we enter into the for-loop exactly 10 times (i goes from (n – 10) to n)

 no matter what n is. (1 point for O(1), and 1 point for attempting to justify whatever

 order they gave.)

Summer 2013 Computer Science Exam, Part A

Page 4 of 6

3) (10 pts) ALG (Binary Search Trees)

a) (5 pts) Draw a binary search tree that will yield the following in-order traversal:

1, 17, 18, 20, 23, 42

 There are many equally fantastic solutions. Here are two of them:

 20 20

 / \ / \

 18 23 17 42

 / \ / \ /

 17 42 1 18 23

 /

 1

 +2 if it’s a BST

 +3 if it has the desired in-order traversal

 Award partial credit if their traversal is close but not perfect.

b) (5 pts) Draw a binary search tree whose post-order traversal will be:

7, 8, 13, 6, 21, 30, 26, 25, 18

 18

 / \

 6 25

 \ / \

 13 21 26

 / \

 8 30

 /

 7

 +2 if it’s a BST

 +3 if it has the desired in-order traversal

 Award partial credit if the traversal is close but not perfect.

Summer 2013 Computer Science Exam, Part A

Page 5 of 6

4) (10 pts) ALG (AVL Trees)

a) (4 pts) Insert the value 20 into the following AVL tree. Clearly show where the node is

inserted initially and what the tree looks like after each rotation that takes place (if any).

 12

 / \ Points:

 10 23 +1 for inserting in correct position

 / +3 for correct double rotation (give

 19 partial credit if applicable)

 12 12 12

 / \ / \ / \

 10 23 10 23 10 20

 / / / \

 19 20 19 23

 \ /

 20 19

 (insertion) (left rot. @ 19) (right rot. @ 23)

Note: Please assign full credit if the final tree is correct.

b) (4 pts) Insert the value 16 into the following AVL tree. Clearly show where the node is

inserted initially and what the tree looks like after each rotation that takes place (if any).

 25

 / \

 18 30

 \

 32

 25 Points:

 / \ +4 for a correct answer

 18 30 Give 1 point if they insert in the

 / \ correct position but then perform a

16 32 rotation.

c) (2 pts) What is the benefit of keeping our AVL trees balanced? (I.e., what advantage do AVL

trees have over binary search trees?)

We guarantee worst-case insertion, delete, and search (retrieval) runtimes of O(log n),

compared to the worst-case runtimes of O(n) for the same operations with BSTs. BSTs only

sport average-case O(log n) operations.

Summer 2013 Computer Science Exam, Part A

Page 6 of 6

5) (10 pts) ALG (Hash Tables)

Insert the following elements into the hash tables below using the two collision resolution

algorithms specified. The tables are both of size 10, so assume that to determine the hash

function for a given input key, we calculate hash(key, 10).

 int hash(int key, int size) {

 return ((key – 31) * 2)%size;

 }

 Keys to insert: 37, 61, 39, 46, 87, 92

a) (5 pts) Insert the elements into this hash table using linear probing to resolve collisions:

61 46 37 87 92 39

0 1 2 3 4 5 6 7 8 9

 hash(37) = 12; 12 % 10 = 2; insert at position 2

 hash(61) = 60; 60 % 10 = 0; insert at position 0

 hash(39) = 16; 16 % 10 = 6; insert at position 6

 hash(46) = 30; 30 % 10 = 0; insert at position 0 1

 hash(87) = 112; 112 % 10 = 2; insert at position 2 3

 hash(92) = 122; 122 % 10 = 2; insert at position 2 3 4

 Points: +2 points for 37, 61, and 39 getting into the correct positions, and

 +1 point each for 46, 87, and 92 getting into the correct positions.

b) (5 pts) Insert the elements into this hash table using quadratic probing to resolve collisions:

61 46 37 87 39 92

0 1 2 3 4 5 6 7 8 9

 hash(37) = 12; 12 % 10 = 2; insert at position 2

 hash(61) = 60; 60 % 10 = 0; insert at position 0

 hash(39) = 16; 16 % 10 = 6; insert at position 6

 hash(46) = 30; 30 % 10 = 0; insert at position 0 1

 hash(87) = 112; 112 % 10 = 2; insert at position 2 3

 hash(92) = 122; 122 % 10 = 2; insert at position 2 3 6 1 8

 Points: Same as part (a).

