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Section II A 

DISCRETE STRUCTURES 

KEY 

 

Question # Category Max  

Score 

Passing 

Score 

Score 

Q1 PRF 

(Induction) 

25 15  

Q2 PRF (Sets) 15 10  

Total --- 40 35  



 

PART A 

 

1) (25 pts) PRF (Induction) 

 

Define a sequence of numbers as follows. Let iW  denote the i
th

 W-number. In particular, 
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Solution. 
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LHS = RHS and the base case is proven. (4 pts) 

 

Inductive hypothesis: Assume for an arbitrary positive integer kn   that 
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Inductive Step: Prove for 1 kn  that 
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The inductive step is complete. We have proven by induction that 
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for all positive integers n. (2 pts) 



 

2) (15 pts) PRF (Sets) 

 

Let A, B and C be arbitrary sets taken from the positive integers.  

 

Prove or disprove: If  CBA , then )()( CABA  . 

 

Solution. 

 

 CBA  is the premise. 

CBAxx  ,  by definition of the empty set. 

][, CBAxx   by negation of  . 

])([, CBAxx   by the associative property of intersection. 

)]()[(, CxBAxx   by the definition of intersection. 

)()(, CxBAxx   by DeMorgan’s Laws. 

)()]()[(, CxBxAxx   by the definition of intersection. 

)()]()([, CxBxAxx   by DeMorgan’s Laws. 

)()()(, CxBxAxx   by the associative property of intersection. 

)()()(, CxBxAxx   by negation of . 

(6 pts) 

 

For some arbitrary element y , assume Ay . 

)( Ay  by double negation. 

)()()( CyByAy   by application of   in )()()(, CxBxAxx  . 

)]()[()( CyByAy   by the associative property of  . 

)()( CyBy   by disjunctive syllogism. 

)()( CyBy   by definition of set complement. 

(4 pts) 

 

Case 1: )( By . 

)()( ByAy  . 

BA  by definition of subset. 

(2 pts) 

 

Case 2: )( Cy . 

)()( CyAy  . 

CA  by definition of subset. 

(2 pts) 

 

)()( CABA   by combining the two cases. 

(1 pt) 

 


