
Computer Science Foundation Exam

August 8, 2008

Computer Science

Section 1A

Name:

PID:

 Max

Pts

Passing

Pts

Category Score

Q1

8

6

KNW, CMP

Q2

8

6

ANL

Q3

9

6

CMP

Q4

8

6

KNW

Q5

8

6

DSN

Q6

9

6

KNW

Total

50

36

You have to do all the 6 problems in this section of the exam.

Partial credit cannot be given unless all work is shown and is readable.

Be complete, yet concise, and above all be neat.

Summer 2008 Computer Science Exam, Part A

 Page 2 of 9

1. [8 pts] Show all your work and indicate your final answer.

a) [4 pts] Determine the value of sum in terms of N, when the following code segment is

executed:

sum = 0;

for(i=1; i <= N*N; i++){

 for(j=1; j <= N-5; j++) {

 sum = sum + 3 + 4*j;

 }

}

 








2

1

5

1

43
n

i

n

j

jsum
  











 


2

1 2

454
153

n

i

nn
n

 (1 point) (1 point)

   




22

1

2

1

2 2515240182153
n

i

n

i

nnnnn (1 point)

234 25152 nnn  (1 point)

There are many equivalent ways to approach this problem. Please be understanding.

b) [4 pts] Evaluate the following expression using summation rules and find the closed

form in terms of n.

  
 

n

ni

i

j10

2

1

5





n

ni

n

ni

ii
1010

1010 







 





11

11

10
n

i

n

i

ii
    








 





2

1011

2

1
10

nnnn

(1 point) (1 point) (1 point)

    110225110215 22  nnnnn

(1 point)

Summer 2008 Computer Science Exam, Part A

 Page 3 of 9

2. [8 pts] Answer each of the following “timing” questions concerning an algorithm of a

particular order and a data set of a particular size. Assume that the run time is affected only

by the size of the data set and not its composition and that N is an arbitrary integer. Show

your work for full credit.

a) [4 pts] Assume that an O(log2N) algorithm runs for 10 milliseconds when the input size

(N) is 32. What is the size of the input that makes the algorithm run for 14 milliseconds?

2

2

1

1 lglg

t

N

t

N


ms

N

ms 14

lg

10

32lg 2 (1 point)
ms

N

ms 14

lg

10

5 2 (1 point)

7
10

14*5
lg 2 

ms

ms
N (1 point) 12827

2 N (1 point)

Don’t deduct points if the student omits units. Solution keys should aspire to a higher standard,

though.

b) [4 pts] Assume that an O(N
2
 log2N) algorithm runs for 6 milliseconds when the input

size (N) is 4. How long does the algorithm run for when the input size is 8?

2

2

2

2

1

1

2

1 lglg

t

NN

t

NN


2

22 8lg8

6

4lg4

tms
 (1 point)

2

364

6

216

tms





 (1 point)

216

6364
2






ms
t (1 point) mst 362  (1 point)

Summer 2008 Computer Science Exam, Part A

 Page 4 of 9

3. [9 pts] For the binary tree given below root is a pointer to the root of the tree.

Redraw (on the following page) the tree shown above when the following function is

executed. Assume that the initial call is modifyT(root, 7, 65).

struct treeNode

{

int data;

struct treeNode *left;

struct treeNode *right;

};

void modifyT(struct treeNode* node_ptr, int key, int num)

{

 if (node_ptr != NULL)

 {

 if (node_ptr->data % 3 == 0)

 {

 node_ptr->data += key;

 modifyT(node_ptr->left, key + 2, num - key);

 modifyT(node_ptr)->right, key – 3, num + key);

 }

 else if (node_ptr->data % 5 == 0)

 {

 node_ptr->data -= key;

 modifyT(node_ptr->right, key - 4, num);

 modifyT(node_ptr->left, key, num + 5);

 }

 else

 {

 node_ptr->data = num;

 modifyT(node_ptr->right, key - 2, num + 10);

 modifyT(node_ptr->left, key + 5, num – 7);

 }

}

}

Summer 2008 Computer Science Exam, Part A

 Page 5 of 9

Answer for Problem 3

1 point for each correct node modification

1 point extra if the entire tree is correct

Summer 2008 Computer Science Exam, Part A

 Page 6 of 9

4. [8 pts] Insert the integers 34, 21, 10, 27, 24, 43, 15, 6 to an initially empty AVL tree in

order. Draw the state of the tree before and after each necessary rotation. Be sure to draw the

final state of the tree.

1 point 1 point

1 point 1 point

1 point 1 point

 2 points for correct final state

Summer 2008 Computer Science Exam, Part A

 Page 7 of 9

5. [8 pts] Write a recursive function that compares two given binary trees. It returns 1 if two

trees are different and it returns 0 otherwise. Use the node structure and the function prototype

provided below:

struct treeNode {

 int data;

 struct treeNode * left;

 struct treeNode * right;

};

int check(struct treeNode *A, struct treeNode *B)

One possible solution:

int check(struct treeNode *A, struct treeNode *B)

{

 if(A == NULL && B == NULL)

 return 0;

 else if(A == NULL || B == NULL)

 return 1;

 else if(a->data != b->data)

 return 1;

if(check(A->left, B->left) || check(A->right, B->right))

 return 1;

 else

 return 0;

}

Grading:

Base cases:

The trees are the same if both trees are NULL (1 point)

The trees are different if one is NULL, the other isn’t (1 point)

The trees are different if neither is NULL, but the data differs (1 point)

Recursive cases:

The two trees are different if either the left or right is different (3 points)

The two trees are the same only if both the left and right are the same (2 points)

Summer 2008 Computer Science Exam, Part A

 Page 8 of 9

6. [9 points] Given the array [37, 21, 28, 6, 2, 23, 35, 17, 44, 4, 11, 33, 18] show the state of

the array after each pass when the following sorting algorithms ((a) Insertion Sort, (b)

Bubble Sort, and (c) Selection Sort) are applied on the original array for three (3) passes.

a) [3 points] Insertion Sort

Pass 1:

[21, 37 | 28, 6, 2, 23, 35, 17, 44, 4, 11, 33, 18]

Pass 2:

[21, 28, 37 | 6, 2, 23, 35, 17, 44, 4, 11, 33, 18]

Pass 3:

[6, 21, 28, 37 | 2, 23, 35, 17, 44, 4, 11, 33, 18]

b) [3 points] Bubble Sort

Pass 1:

[2 | 37, 21, 28, 6, 4, 23, 35, 17, 44, 11, 18, 33]

Pass 2:

[2, 4 | 37, 21, 28, 6, 11, 23, 35, 17, 44, 18, 33]

Pass 3:

[2, 4, 6 | 37, 21, 28, 11, 17, 23, 35, 18, 44, 33]

c) [3 points] Selection Sort

Pass 1:

[2, 21, 28, 6, 37, 23, 35, 17, 44, 4, 11, 33, 18]

Pass 2:

[2, 4, 28, 6, 37, 23, 35, 17, 44, 21, 11, 33, 18]

Pass 3:

[2, 4, 6, 28, 37, 23, 35, 17, 44, 21, 11, 33, 18]

Grading Criteria:

1 point for each correct array

