
Page 1 of 4

Computer Science Foundation Exam

January 17, 2026

Section A

BASIC DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2026 Section A: Basic Data Structures

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

In the Mario Kart video game series, drivers collect items (such as shells, bananas, and mushrooms) during

a race. Each driver maintains a list of collected items that may grow as new items are obtained. Given the

following typedef structure definitions:

//struct representing an item

typedef struct {

 char itemName[15];

} item_t;

//struct representing a driver

typedef struct {

 char driverName[20];

 item_t *items;

 int itemCount;

} driver_t;

complete the following function addItem. This function will store a new item that a driver collects

during a race. In particular, the string inside newItem needs to be copied into the newly allocated memory

within driver. The function returns 1 if the item was successfully added. Otherwise, 0 is returned. The

following assumptions can be made:

• The driver can potentially have no items initially, which would be represented by the value 0 in

the component itemCount.

• You may assume that all items inserted fit within the array size of 15 elements. There is no need

to do a conditional check.

• A driver can hold at most 3 items. (addItem should return 0 if the driver already has 3 items.)

int addItem(driver_t *driver, const item_t *newItem) {

}

Spring 2026 Section A: Basic Data Structures

Page 3 of 4

2) (5 pts) ALG (Linked Lists)

Suppose we have a singly linked list implemented with the structure below and a function that takes in

the head of the list and an integer.

typedef struct node_s{

 int val;

 struct node_s * next;

}node_t;

node_t *mystery(node_t *head) {

 node_t *second, *rest, *tail;

 if(head == NULL || head->next == NULL)

 return head;

 second = head->next;

 rest = mystery(second->next);

 head->next = rest;

 tail = head;

 while(tail->next != NULL)

 tail = tail->next;

 tail->next = second;

 second->next = NULL;

 return head;

}

If we call head = mystery(head); on the following list, show the list after the function has finished.

head → 1 → 2 → 3 → 4 → 5? Please fill in the designated slots below. (Note: The list does have five

items in it after the function call executes.)

head → ______ → ______ → ______ → ______ → ______

Spring 2026 Section A: Basic Data Structures

Page 4 of 4

3) (10 pts) ALG (Stack)

Convert the following infix expression to postfix using a stack. Show the contents of the stack at the

indicated points (A, B, and C) in the infix expression.

 A B C
7 * (3 + 9) - 4 / 6 + (8 * 2 – (5 + 7)) / 3 - 9 * 4 + 6

 A B C

Note: A indicates the location in the expression AFTER the minus operator and before the value 4. B

indicates the location in the expression AFTER the value 5 and before the plus operator. C indicates the

location in the expression AFTER the value 4 and before the plus operator. Please use the cell closest to

the marked letter (A, B or C) as the bottom of the stack.

Resulting postfix expression:

Note: There are exactly the correct number of boxes above. These should be filled with 13 numbers

and 12 operators.

Page 1 of 4

Computer Science Foundation Exam

January 17, 2026

Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 10 ALG

2 5 DSN

3 10 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2026 Section B: Advanced Data Structures

Page 2 of 4

1) (10 pts) ALG (Binary Trees)

Consider the following binary search tree and the printMystery function shown below. What would

be printed by the function if we pass the root of the following tree? Please place each of the ten

numbers that get printed in the order they get printed in the blanks provided at the bottom of the page.

typedef struct treenode {

 int data;

 struct treenode *left;

 struct treenode *right;

} treenode;

 void printMystery(treenode* root) {

 if (root == NULL)

 return;

 printMystery(root->right);

 printf("%d ", root->data);

 printMystery(root->left);

}

Tree: 20

 / \

 63 44

 / \ /

 8 36 19

 / \ \

 51 2 31

 /

 14

_____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Spring 2026 Section B: Advanced Data Structures

Page 3 of 4

2) (5 pts) DSN (Hash Tables)

Consider the following hash function for a string, s, of lowercase letters, where value('a') = 1, value('b')

= 2, ..., value('z') = 26, and the length of the string is n.

f(s, m) = (value(s[0]) x 270 + value(s[1]) x 271 + value(s[2]) x 272 + ... value(s[n-1]) x 27n-1) mod m.

Complete the function below so that it computes this hash function. Do not call the pow function. (Any

solution with a call to the pow function will get an automatic 0.) Remember all computations must occur

"under mod." You may assume that the value of m is small enough that if coded appropriately no overflow

errors will occur.

int f(char* s, int m) {

 int res = 0;

 int pow27 = 1;

 int len = strlen(s);

 for (int i=0; i<len; i++) {

 // Update res to equal the running value of the hash function

 // so far.

 ___ ;

 // Update pow27 to be the current power of 27 under mod.

 ___ ;

 }

 return res;

}

Spring 2026 Section B: Advanced Data Structures

Page 4 of 4

3) (10 pts) ALG (AVL Trees)

Consider the following AVL tree. Delete 8 from the tree and show the final resulting AVL tree. In the process of

the delete, the tree gets restructured twice. Draw a box around the full tree at the following stages of the process:

(a) (5 pts) Right after the first restructuring takes place.

(b) (5 pts) At the end of the process, right after the second restructuring takes place.

 54

 / \

 6 76

 / \ / \

 3 8 61 85

 \ / \ / \

 4 55 67 79 93

 / \

 88 97

Page 1 of 4

Computer Science Foundation Exam

 January 17, 2026

Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2026 Section C: Algorithms Analysis

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

Let T(n, m) be the run-time of the following function, in terms of input parameters n and m. Write down a

recurrence relation that T(n, m) satisfies.

int f(int* values, int n, int m) {

 if (n == 1) return values[0];

 int left = f(values, n/2, m-1);

 int right = f(values+n/2, n/2, m-1);

 while (m > 0) {

 if (left > right)

 left--;

 else

 right++;

 m--;

 }

 return 2*(left+right);

}

Spring 2026 Section C: Algorithms Analysis

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

An algorithm which has a run time of O(𝑛2√𝑛) takes 3 seconds to run on an input with size n = 10,000.

(Note: the function in the Big-Oh is read out loud as, "n squared times square root n.") If there are

86,400 seconds in a day, how many days would the algorithm take to complete on an input size of n =

106? Express your answer as a fraction in lowest terms. Put a box around your final answer.

Spring 2026 Section C: Algorithms Analysis

Page 4 of 4

3) (10 pts) ANL (Recurrence Relations)

Determine a closed form solution to the following recurrence relation, in terms of n. (Your solution must

be an exact function in terms of n, not a Big-Oh bound.)

𝑇(𝑛) = 3𝑇(𝑛 − 1) + 3𝑛, for integers n > 1

𝑇(1) = 12

Page 1 of 4

Computer Science Foundation Exam

 January 17, 2026

Section D

ALGORITHMS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

PLEASE USE CAPITAL LETTERS IN WRITING YOUR NAME

Last Name: _______________________________

First Name: _______________________________

UCFID: ____________________________________

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2026 Section D: Algorithms

Page 2 of 4

1(10 pts) DSN (Recursive Coding)

Consider the problem of cutting a chocolate bar that is length inches long and width inches wide into

multiple 1 inch by 1 inch squares. You may either cut the bar horizontally or vertically to create two

rectangular bars that are an integer number of inches in length and width and are as close to equal size as

possible. For example, a bar that is 8 inches long and 3 inches wide can be cut into two bars that are both

4 inches long and 3 inches wide, OR into two bars where one is 8 inches long and 1 inch wide and the

other bar is 8 inches long and 2 inches wide. From there, both bars must be recursively cut. Note that if

one dimension is a single inch, only a single cut is possible (reducing the larger dimension.) The cost of

a cut that leaves the length unchanged is equal to length and a cut that keeps the width unchanged is

equal to 2*width. Write a recursive function that takes in the parameters length and width (both

positive integers), and returns the minimum cost of cutting a chocolate bar with those dimensions into

1inch by 1 inch squares.

int minCutCost(int length, int width) {

}

Spring 2026 Section D: Algorithms

Page 3 of 4

2) (10 pts) DSN (Sorting)

Although the example code traditionally shown for the Bubble Sort is iterative, the algorithm itself lends

itself easily to recursion. (After one pass of Bubble Sort on an array of size n, the work that remains is a

problem of the exact same nature.) Write a recursive implementation of the Bubble Sort algorithm that

sorts elements in ascending order in the function shown below.

void bubbleSortRec(int* array, int n) {

}

Spring 2026 Section D: Algorithms

Page 4 of 4

3) (5 pts) ALG (Base Conversion)

Convert each of the following binary numbers into base 16 (Hexadecimal). No need to show your work,

credit will be based solely on the answers.

(a) 10010110

(b) 11001111

(c) 101101

(d) 10111101011

(e) 100110110100010000

	SecA-Jan26.pdf
	SecB-Jan26.pdf
	SecC-Jan26.pdf
	SecD-Jan26.pdf

