Computer Science Foundation Exam

BASIC DATA STRUCTURES

Janu

S

ary 17, 2026

ection A

NO books, notes, or calculators may be used,
and you must work entirely on your own.

SOLUTION
Question # Max Pts Category Score
1 10 DSN
2 5 ALG
3 10 ALG
TOTAL 25 -—--

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not
graded based on the answer alone. Credit cannot be given unless all work is shown
and is readable. Be complete, yet concise, and above all be neat. For each coding
question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Page 1 of 4

Spring 2026 Section A: Basic Data Structures

1) (10 pts) DSN (Dynamic Memory Management in C)

In the Mario Kart video game series, drivers collect items (such as shells, bananas, and mushrooms) during
a race. Each driver maintains a list of collected items that may grow as new items are obtained. Given the
following typedef structure definitions:

//struct representing an item
typedef struct {

} it

//st
type

char itemName[1l5];
em t;

ruct representing a driver
def struct {

char driverName[20];
item t *items;

int itemCount;

} driver t;

complete the following function addItem. This function will store a new item that a driver collects
during a race. In particular, the string inside newI tem needs to be copied into the newly allocated memory
within driver. The function returns 1 if the item was successfully added. Otherwise, O is returned. The
following assumptions can be made:

int

The driver can potentially have no items initially, which would be represented by the value 0 in

the component i temCount.

You may assume that all items inserted fit within the array size of 15 elements. There is no need

to do a conditional check.
A driver can hold at most 3 items. (addItem should return 0 if the driver already has 3 items.)

addItem(driver t *driver, const item t *newltem) {
// 2 pts 1 for if, 1 for return.

if (driver->itemCount == 3)
return 0;

// 3 pts, 1 pt LHS and realloc, 2 pts parameters
driver->items = realloc(driver->items, sizeof(item t) * (driver->itemCount+l));

// 3 pts, 1 pt strcpy, 1 pt 1st parameter, 1 pt 27 parameter
strcpy (driver->items [driver->itemCount] .itemName, newlItem->itemName) ;

// 1 pt
driver->itemCount++;

// 1 pt
return 1;

Page 2 of 4

Spring 2026 Section A: Basic Data Structures
2) (5 pts) ALG (Linked Lists)

Suppose we have a singly linked list implemented with the structure below and a function that takes in
the head of the list and an integer.

typedef struct node s{

int val;

struct node s * next;
}node_ t;
node t *mystery(node t *head) {

node t *second, *rest, *tail;

if (head == NULL || head->next == NULL)
return head;

second = head->next;

rest = mystery(second->next) ;
head->next = rest;

tail = head;

while (tail->next != NULL)
tail = tail->next;

tail->next = second;
second->next = NULL;

return head;

}

If we call head = mystery(head); on the following list, show the list after the function has finished.

head - 1 - 2 - 3 » 4 — 5?7 Please fill in the designated slots below. (Note: The list does have five
items in it after the function call executes.)

head>1-53->5-4-52

Grading: 1 pt for each slot. Correct number must be in the correct slot to get the point.

Page 3 of 4

Spring 2026 Section A: Basic Data Structures
3) (10 pts) ALG (Stack)

Convert the following infix expression to postfix using a stack. Show the contents of the stack at the
indicated points (A, B, and C) in the infix expression.

A B C
7* 3+9) -4/6+ (8*2-(5+7))/3-9*4+6

(

(*
— + —
A B C

Note: A indicates the location in the expression AFTER the minus operator and before the value 4. B
indicates the location in the expression AFTER the value 5 and before the plus operator. C indicates the
location in the expression AFTER the value 4 and before the plus operator.

Resulting postfix expression:

T13(9 |+ |*|4|6 |/ |—[8[2|*|5|T|+|—=|3|/[|+][9[4|*|—]6]+

Note: There are exactly the correct number of boxes above. These should be filled with 14 numbers
and 13 operators.

Grading: 1 pt for the first stack, all or nothing
2 pts for the second stack, can give 1 pt
2 pts for the third stack, can give 1 pt
5 pts for the expression — automatic 0 if the numbers aren't in the correct relative order,
if they are, then take off 1 pt for each operator you have to move to a different location
to make the expression correct, cap at 0.

Page 4 of 4

Computer Science Foundation Exam

January 17, 2026
Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,
and you must work entirely on your own.

SOLUTION
Question # Max Pts Category Score
1 10 ALG
2 5 DSN
3 10 ALG
TOTAL 25 —

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not
graded based on the answer alone. Credit cannot be given unless all work is shown
and is readable. Be complete, yet concise, and above all be neat. For each coding
question, assume that all of the necessary includes (stdlib, stdio, math, string) for that
particular question have been made.

Page 1 of 4

Spring 2026 Section B: Advanced Data Structures
1) (10 pts) ALG (Binary Trees)

Consider the following binary search tree and the printMystery function shown below. What would
be printed by the function if we pass the root of the following tree? Please place each of the ten
numbers that get printed in the order they get printed in the blanks provided at the bottom of the page.

typedef struct treenode {
int data;
struct treenode *left;
struct treenode *right;
} treenode;

void printMystery (treenode* root) {

if (root == NULL)
return;

printMystery (root->right) ;
printf ("%d ", root->data);
printMystery (root->left);

Tree: 20
/ \
63 44
/ \ /
8 36 19
/N \
51 2 31
/
14

Grading: 1 pt per correct number in the correct slot, no exceptions

Page 2 of 4

Spring 2026 Section B: Advanced Data Structures
2) (5 pts) DSN (Hash Tables)

Consider the following hash function for a string, s, of lowercase letters, where value('a') = 1, value('b')
=2, ..., value('z") = 26, and the length of the string is n.

f(s, m) = (value(s[0]) x 27° + value(s[1]) x 27" + value(s[2]) x 27% + ... value(s[n-1]) x 27™!) mod m.

Complete the function below so that it computes this hash function. Do not call the pow function. (Any
solution with a call to the pow function will get an automatic 0.) Remember all computations must occur
"under mod." You may assume that the value of m is small enough that if coded appropriately no overflow
errors will occur.

int f(char* s, int m) {

int res = 0;
int pow27 = 1;
int len = strlen(s);

for (int i=0; i<len; i++) {

// Update res to equal the running value of the hash function
// so far.

res = (res + pow27* (s[i]-"a'+1l))%m;
// Update pow27 to be the current power of 27 under mod.
pow27 = (pow27*27)%m ;

}

return res;

}

Grading: first line = 3 pts, 1 pt pow27 times, and add to res,
1 pt for (s[i] —'a' + 1), can give pt if forgot +1
1 pt for mod

second line = 2 pts (1 pt mult, 1 pt mod)

Page 3 of 4

Spring 2026 Section B: Advanced Data Structures
3) (10 pts) ALG (AVL Trees)

Consider the following AVL tree. Delete 8 from the tree and show the final resulting AVL tree. In the process of
the delete, the tree gets restructured twice. Draw a box around the full tree at the following stages of the process:

(a) (5 pts) Right after the first restructuring takes place.
(b) (5 pts) At the end of the process, right after the second restructuring takes place.

54

6 76
/A / \
3 8 61 &5
\ /NN
4 55 6779 93

(a) Picture after first restructure

/NN
55 6779 93

Grading: 1 pt for location of 4, 1 pt location 3, 1 pt location 6, 1 pt location 54, 1 pt rest intact

(b) Picture after second restructure

76
/ \
54 85
/A / \
4 61 79 93
/NN /N
3 655 67 88 97

Grading: 1 pt for location of 54, 1 pt location 76, 1 pt location 85, 1 pt everything below 54, 1 pt everything
below 85

Page 4 of 4

Computer Science Foundation Exam

January 17, 2026
Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,
and you must work entirely on your own.

SOLUTION
Question # Max Pts Category Score
1 5 ANL
2 10 ANL
3 10 ANL
TOTAL 25 —

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not
graded based on the answer alone. Credit cannot be given unless all work is shown
and is readable. Be complete, yet concise, and above all be neat. For each coding
question, assume that all of the necessary includes (stdlib, stdio, math, string) for
that particular question have been made.

Page 1 of 4

Spring 2026 Section C: Algorithms Analysis
1) (5 pts) ANL (Algorithm Analysis)

Let T(n, m) be the run-time of the following function, in terms of input parameters n and m. Write down a
recurrence relation that T(n, m) satisfies.

int f(int* wvalues, int n, int m) {
if (n == 1) return values[0];

int left = f(values, n/2, m-1);
int right = f(values+n/2, n/2, m-1);

while (m > 0) {
if (left > right)
left--;
else
right++;
m--;

return 2* (left+right);
}

Both recursive values take in a second parameter equal to n/2 and a third parameter equal to m-1. Thus, if we let
T(n, m) be the run-time of the function above, it follows that each of the recursive calls take T(n/2, m-1) time.
Following the recursive calls there is a loop. The body of the loop takes O(1) time and executes exactly the m
times. (Notice that no matter what, m is decremented by 1 each time and we exit the loop when m = 0. Thus, the
run-time of the loop is O(m). It follows that the desired recurrence relation is:

T(n, m) =2T(n/2, m-1) + O(m)

Grading:

All credit is just based on the recurrence relation written.

+1 for writing T(n, m) on the LHS

+3 for writing 2T(n/2, m-1) on the RHS (+1 for 2, +1 for n/2, +1 for m-1)

+1 for writing + O(m)
Take off points as necessary if components are incorrectly combined.

Page 2 of 4

Spring 2026 Section C: Algorithms Analysis
2) (10 pts) ANL (Algorithm Analysis)

An algorithm which has a run time of O(n?v/n) takes 3 seconds to run on an input with size n = 10,000.
(Note: the function in the Big-Oh is read out loud as, "n squared times square root n.") If there are
86,400 seconds in a day, how many days would the algorithm take to complete on an input size of n =
10°? Express your answer as a fraction in lowest terms. Put a box around your final answer.

Let T(n) = c(n?)(v/n) be the amount of time the algorithm takes on input size n. Then, we have

T(10%) = c(10%)%2y/10* = ¢(108 x 10?) = 3 sec

3 sec
c=——

1 010
Now, we must determine T'(10°).

3 sec 15

2
T(10%) = ¢(10%)[10° =

1010 (1012 x 10%) = (3 sec) x Tk 300,000 sec.
We must convert this to days. Use the factor given to determine:
300,000 1day 3000 4 375 4 125 J
X = = — -
OO SEC X 86400 sec 864 00 T 108 YW T 36 4V

Grading: 1 pt set up equation for ¢
3 pts get to ¢ = 3/10' sec or equivalent
1 pt plug in 10° into equation with known c.
3 pts to get to 300,000 sec
2 pts to get to a fraction in lowest terms for days. (1 pt for any correct fraction that
isn't fully reduced.)

Page 3 of 4

Spring 2026 Section C: Algorithms Analysis
3) (10 pts) ANL (Recurrence Relations)

Determine a closed form solution to the following recurrence relation, in terms of n. (Your solution must
be an exact function in terms of n, not a Big-Oh bound.)

T(n) = 3T(n — 1) + 3™, for integers n > 1
T(1) = 12

Use the iteration technique:

T(n) =3T(n—1)+ 3"
=3BT(n—-2)+3" 1) +3"
=9T(n—2)+ 3"+ 3"
=9T(n—2) +2(3")
=9(3T(n—3) +3" %)+ 2(3")
=27T(n—3) + 3™ + 2(3")
=27T(n—3) + 33"

In general, after k iterations, we have:
T(n) = 3T(n — k) + k(3™)
Since T(1) is known, substitute k =n — 1 in the general form above to yield:

T(n) =3""T(n—(n—1))+ (n— 13"
T(n) = 3" T(1) + (n— 1)(3™)

T(n) = 123") + (n—1)(3")

T(n) =43")+m-1E")
Tm)=mn-1+4)(3")

T(n) = (n+3)(3")

Grading: 1 pt writing recurrence
1 pt second iteration
1 pt third iteration
2 pts general form
1ptplugink=n-1
1 pt plugging in T(1) =12
3 pts to get to final answer (also accept n3" + 3™*1), give partial as needed

Page 4 of 4

Computer Science Foundation Exam

January 17, 2026
Section D

ALGORITHMS

NO books, notes, or calculators may be used,
and you must work entirely on your own.

SOLUTION
Question # Max Pts Category Score
1 10 DSN
2 10 DSN
3 5 ALG
TOTAL 25 —

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not
graded based on the answer alone. Credit cannot be given unless all work is shown
and is readable. Be complete, yet concise, and above all be neat. For each coding
question, assume that all of the necessary includes (stdlib, stdio, math, string) for
that particular question have been made.

Page 1 of 4

Spring 2026 Section D: Algorithms
1(10 pts) DSN (Recursive Coding)

Consider the problem of cutting a chocolate bar that is length inches long and width inches wide into
multiple 1 inch by 1 inch squares. You may either cut the bar horizontally or vertically to create two
rectangular bars that are an integer number of inches in length and width and are as close to equal size as
possible. For example, a bar that is 8 inches long and 3 inches wide can be cut into two bars that are both
4 inches long and 3 inches wide, OR into two bars where one is 8 inches long and 1 inch wide and the
other bar is 8 inches long and 2 inches wide. From there, both bars must be recursively cut. Note that if
one dimension is a single inch, only a single cut is possible (reducing the larger dimension.) The cost of
a cut that leaves the length unchanged is equal to length and a cut that keeps the width unchanged is
equal to 2*width. Write a recursive function that takes in the parameters length and width (both
positive integers), and returns the minimum cost of cutting a chocolate bar with those dimensions into
linch by 1 inch squares.

int minCutCost (int length, int width) {

// Grading: 2 pts
if (length == 1 && width == 1) return 0;

// Grading: 1 pt but these aren't necessary if you have an if
// elsewhere

if (length == 1) return width-1;

if (width == 1) return 2* (length-1);

// Grading: 2 pts
int cutLen = minCutCost (length/2, width) +
minCutCost (length-length/2, width) + 2*width;

// Grading: 2 pts
int cutWid = minCutCost (length, width/2) +
minCutCost (length, width-width/2) + length;

// Grading: 3 pts total 1 pt comparison, 1 pt for each return
if (cutWid < cutLen)

return cutWid;
return cutlen;

}

Note: For this cost function, it turns out that no matter how you make your cuts, the cost is the
same. But the purpose of this question was to test the idea of recursion, test the idea of trying out
both cuts and taking the answer that is smaller, so for that reason, the grading criteria shown
above was applied instead of giving full credit to other answers that might turn out to work. Here
is an equivalent function, mathematically:

int minCutCostAlt (int length, int width) {
return 2* (length-1)*width + (width-1)*length;
}

Page 2 of 4

Spring 2026 Section D: Algorithms

2) (10 pts) DSN (Sorting)

Although the example code traditionally shown for the Bubble Sort is iterative, the algorithm itself lends
itself easily to recursion. (After one pass of Bubble Sort on an array of size n, the work that remains is a
problem of the exact same nature.) Write a recursive implementation of the Bubble Sort algorithm that

sorts elements in ascending order in the function shown below.

void bubbleSortRec (int* array, int n) {

if (n == 1) return; // Grading: 1 pt
for (int i=0; i<n-1; i++) { // Grading: 1 pt, must be n-1
if (array[i]>array[i+1]) { // Grading: 2 pts
int tmp = array[i]; // Grading: 1 pt
array[i] = array[i+1]; // Grading: 1 pt
array[i+l] = tmp; // Grading: 1 pt
}
}
bubbleSortRec (array, n-1); // Grading: 3 pts

}

Grading Note: There are probably a few valid interpretations of the question and a few different
ways to implement one pass of the Bubble Sort followed by a recursive call. Use discretion as
necessary.

Page 3 of 4

Spring 2026 Section D: Algorithms
3) (5 pts) ALG (Base Conversion)

Convert each of the following binary numbers into base 16 (Hexadecimal). No need to show your work,
credit will be based solely on the answers.

(a) 10010110
For each of these, break the bits into blocks of size four from right to left. If there are fewer than 4 bits

in the last block, pad to the left with Os as necessary. Then, convert each block of 4 bits to hexadecimal.
(These should just be memorized...)

1001 0110

96

(b) 11001111
1100 1111
CF

(c) 101101
0010 1101

2D

(d)10111101011

0101 1110 1011

SEB

(€) 100110110100010000
10 0110 1101 0001 0000

26D10

Grading: 1 pt for each one, must be completely correct to get the point.

Page 4 of 4

	SecA-Jan26-Sol.pdf
	SecB-Jan26-Sol.pdf
	SecC-Jan26-Sol.pdf
	SecD-Jan26-Sol.pdf

