
Page 1 of 4

Computer Science Foundation Exam

January 15, 2022

Section A

BASIC DATA STRUCTURES

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2022 Section A: Basic Data Structures

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Consider the following structures and the main function shown below:

typedef struct StringType {

 char *string;

 int length;

} StringType;

typedef struct Employee {

 StringType *ename;

 double salary;

} Employee;

#include <string.h>

#include <stdio.h>

int main() {

 //array of employees’ names

 char nameList[][50] = {"Adam", "Josh", "Kyle", "Ali", "Mohammed"};

 //array of salaries, where 15.80 is the salary of Adam, 13.50 is

 // the salary of Josh, etc.

 double salaries[5] = {15.80, 13.5, 20.9, 12.99, 10.5};

 Employee *employees = createEmployees(nameList, salaries, 5);

 // Other code here…

 return 0;

}

Write a function createEmployees() that takes the list of employees' names, list of their salaries, and

length of the list (empCount) as the parameters, and returns a pointer to a dynamically allocated array

of Employee storing the relevant information for empCount employees. The function dynamically

allocates memory for empCount number of employees and assigns the name and salaries for each of them

from the input parameters. During this process, the names are stored in the dynamically allocated memory

of StringType, and also make sure you assign the length of the name appropriately. Your code should use

exact amount of memory needed to store the corresponding names. You may assume no name is longer

than 49 characters.

Employee* createEmployees(char names[][50], double *salaries, int empCount) {

 Employee *employees = malloc (empCount * sizeof(Employee)); // 2 pts

 for (int i = 0; i < empCount; i++) { // 1 pt

 employees[i].ename = malloc(sizeof(StringType)); // 1 pt

 int length = strlen(names[i])+1; // 0 pts

 employees[i].ename->string = malloc(length * sizeof(char)); // 2 pts

 strcpy(employees[i].ename->string, names[i]); // 1 pt

 employees[i].ename->length = length-1; // 1 pt

 employees[i].salary = salaries[i]; // 1 pt

 }

 return employees; // 1 pt

}

Spring 2022 Section A: Basic Data Structures

Page 3 of 4

2) (5 pts) ALG (Linked Lists)

Suppose we have a linked list implemented with the structure below. We also have a function that takes

in the head of the list and returns a node pointer.

typedef struct node {

 int num;

 struct node* next;

} node;

node* something(node* head) {

 node* t = head;

 if(t==NULL || t->next == NULL) return t;

 while(t->next->next != NULL)

 t = t->next;

 t->next->next = head;

 head = t->next;

 t->next = NULL;

 return head;

}

A linked list, mylist, has the following nodes: 1 -> 9 -> 6 -> 7 -> 4 -> 8, where 1 is at the head node of

the list.

a) What will be the status of the linked list (draw the full list) after following function call.

mylist = something(mylist);

Draw the updated linked list after the function call:

mylist -> 8 -> 1 -> 9 -> 6 -> 7 -> 4

Grading: 3 pts for a correct list, 1 pt for a reverse list or a list that has a different front element, 0

pts otherwise

b) What general task does the function something perform? Please answer in a single sentence.

The function takes the last node of the list, moves it to the front, and returns a pointer to the front of the

resulting list.

Grading: 2 pts (give full credit if the response is regular English and roughly correct, give 1 pt if

the answer is in the right direction but has some clear inaccuracies, 0 pts otherwise)

Spring 2022 Section A: Basic Data Structures

Page 4 of 4

3) (10 pts) DSN (Stacks)

Consider a string mathematical expression can have two kind of parenthesis ‘(‘ and ‘{‘. The parenthesis

in an expression can be imbalanced, if they are not closed in the correct order, or if there are extra starting

parenthesis or extra closing parenthesis. The following table shows some examples:

Expression Status Expression Status

({)} Imbalanced due to incorrect order of). ({ })) Imbalanced due to extra)

(() Imbalanced due to extra (({ }) Balanced

{ () } Balanced

Write a function that will take an expression in the parameter and returns 1, if the expression is balanced,

otherwise returns 0. You have to use stack operations during this process. Assume the following stack

definition and the functions already available to you. You may assume that the stack has enough storage

to carry out the desired operations without checking.

void initialize(stack* s); // initializes an empty stack.

void push(stack* s, char value); //pushes the char value to the stack

int isEmpty(stack* s); // Returns 1 if the stack is empty, 0 otherwise.

char pop(stack* s); // pops and returns character at the top of the stack.

char peek(stack* s); // returns character at the top of the stack.

Note: pop and peek return 'I' if the stack s is empty.

// Pre-condition: e only contains the characters '(',')','{' and '}'.

int isBalanced(char *e) {

 struct stack s;

 initialize(&s);

 for(int i=0; e[i]!='\0'; i++) {

 if(e[i] == '(' || e[i] == '{') // 2 pts

 push(&s, e[i]); // 1 pt

 else if(e[i] == ')') { // 1 pt

 if(pop(&s) != '(') return 0; // 2 pts

 }

 else if(e[i] == '}') { // 1 pt

 if(pop(&s) != '{') return 0; // 2 pts

 }

 }

 return isEmpty(&s) ; // 1 pt

}

Page 1 of 4

Computer Science Foundation Exam

 January 15, 2022

Section B

ADVANCED DATA STRUCTURES

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2022 Section B: Advanced Data Structures

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

The goal of a function named legacyCount() is to take the root of a binary tree (root) and return the number

of nodes that contain a value greater than at least one of their ancestors. For example, this function would

return 4 for the following tree, since 60 is greater than both of its ancestors (3 and 14), 40 is greater than

two of its ancestors (3 and 14) (even though 40 isn’t greater than its parent!), 28 is greater than both of its

ancestors (9 and 14), and 2 is greater than one of its ancestors (1).

 14 Our node struct is as follows:
 / \

 3 9 typedef struct node {

 / \ \ int data;

 1 60 28 struct node *left;

 / \ struct node *right;

 2 40 } node;

To make the code work, legacyCount() is a wrapper function for a recursive function called

legacyHelper(). Included below is the code for legacyCount() as well as the function signature for

legacyHelper(). Write all of the code for the legacyHelper() function. Note: If root is NULL, you should

return 0.

int legacyCount(node *root) {

 if (root == NULL) return 0;

 return legacyHelper(root->left, root->data) +

 legacyHelper(root->right, root->data);

}

int legacyHelper(node* root, int minAncestor) {

 if (root == NULL)

 return 0;

 if (root->data > minAncestor)

 return 1 + legacyHelper(root->left, minAncestor) +

 legacyHelper(root->right, minAncestor);

 return legacyHelper(root->left, root->data) +

 legacyHelper(root->right, root->data);

}

Grading:

 + 2 pt for correct root == NULL base case in recursive function

 +1 for if checking root->data vs. smallest Ancestor

 +3 for returning the right result in this case (1 pt for 1, 1 pt for each rec call)

 +4 for return in other case, 1 pt for each rec call and 1 pt for updating the second parameter

 in both calls.

Spring 2022 Section B: Advanced Data Structures

Page 3 of 4

2) (5 pts) ALG (Hash Tables)

Suppose have some hash function that produces the following hash values for the following strings.

String hash value

Wicked 35429

Cheesy 171745742

Lasagna 72457241

For 559079

Dinner 96879

Using the hash values above, insert the strings (one by one, in the order given above, from “wicked” down

through “dinner”) into the following hash table. Use quadratic probing to resolve any collisions. Note

that there is a standard technique for dealing with hash values that exceed the length of a table (e.g., values

that exceed 9 in the case of this particular table), and it’s up to you to use that technique here.

Note: The length of the hash table is 10.

For Lasagna Cheesy Dinner Wicked

0 1 2 3 4 5 6 7 8 9

Grading:

+1 point for each item being in the correct cell.

Spring 2022 Section B: Advanced Data Structures

Page 4 of 4

3) (10 pts) DSN (Tries)

Write an iterative, non-recursive function that takes the root of a trie (root) and a string (str) and returns

the number of new nodes we would have to add to our trie in order to insert that string. You may assume

that str is non-NULL, non-empty, and contains lowercase alphabetic characters only (i.e., it won’t contain

uppercase letters or non-alphabetic characters). However, you must handle the case where root is NULL.

Special Restrictions:

a. Please do not use pointer arithmetic (e.g., str + 1).

b. Do not modify or corrupt the trie or the string. (Do not add nodes to the trie!)

c. Do not call strlen() repeatedly, as it is an O(k) function (where k is the length of the string). If you

need to call strlen(), find a way to do it only once for the given string.

The trie node struct and function signature are as follows. Do NOT write any helper functions.

#include <string.h>

typedef struct TrieNode {

 struct TrieNode *children[26];

 int flag; // 1 if the string is in our trie, 0 otherwise

} TrieNode;

int newNodeCount(TrieNode* root, char* str) {

 int len = strlen(str);

 for (int i=0; i<len; i++) {

 if (root == NULL) return len-i;

 root = root->children[str[i]-'a'];

 }

 return 0;

}

Grading: 2 pts for calling strlen only once.

 1 pt for loop through string

 2 pts for checking for NULL

 2 pts for the return value when hitting NULL

 2 pts for advancing to the appropriate next pointer

 1 pt for returning 0 in the case the word is in the trie.

Page 1 of 4

Computer Science Foundation Exam

 January 15, 2022

Section C

ALGORITHMS ANALYSIS

SOLUTION

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Spring 2022 Section C: Algorithms Analysis

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

What is the best and worst case runtime for the following algorithm, in terms of the input parameter n?

You may assume that the array pointed to by arr is of length n. Give a brief explanation for your

answers.

int foo(int * arr, int n, int value){

 int cur = 0, jump = n/2;

 while (jump > 0) {

 if (value > arr[cur])

 cur += jump;

 else if (value == arr[cur])

 return cur;

 jump = jump/2;

 }

 return cur;

}

The best case run time is O(1). It's possible that on the very first loop iteration that the else if clause that

returns cur triggers. In this situation, only a fixed number of statements, all of which are simple, run.

The worst case run time is O(lg n). The number of times the loop runs is controlled by jump. Each time,

jump's value divides by 2 and the loop will end the iteration after jump equals 1. Since jump starts out as

n/2, if we let k equal the number of loop iterations, then we get the equation (n/2) / 2k = 1. Solving for k

in this equation yields k = log2n - 1. Since the work in each loop iteration is constant, the run time of

O(lg n) follows.

Grading: 1 pt for the best case answer, 1 pt for its justification, 1 pt for the worst case answer, 2

pts for its justification

Spring 2022 Section C: Algorithms Analysis

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

An algorithm processes an array of size r by c in O(rc2) time. For an array of size r = 200 and c = 500,

the algorithm takes 5.0 seconds. How long, in seconds, will the algorithm take to process an input array

of size r = 800 and c = 300? Please express your answer with exactly one digit after the decimal point.

Let T(r, c) = Mrc2, for some constant M and represent the run time of the algorithm processing the array.

Using the given information, we have:

𝑇(200, 500) = 𝑀(200)5002 = 5𝑠𝑒𝑐

50,000,000𝑀 = 5𝑠𝑒𝑐

𝑀 = 10−7𝑠𝑒𝑐

Now, we must solve for T(800, 300):

𝑇(800, 300) = (10−7𝑠𝑒𝑐)(800)3002 = (10−7sec)(72)(106) = 7.2𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Grading: 2 pts for setting up equation with constant, r and c.

 2 pts for solving for the constant (M in what's above)

 2 pts for setting up equation for solution

 4 pts for properly simplifying the answer to 7.2 seconds (may award partial)

Spring 2022 Section C: Algorithms Analysis

Page 4 of 4

3) (10 pts) ANL (Summations)

With proof, find the ordered pair of values (a, b) which satisfy the equation below?

∑(𝑎𝑘 + 𝑏)

2𝑛

𝑘=1

= 7𝑛2 + 3𝑛

Simplify the left hand side in terms of a and b to get to this point:

∑(𝑎𝑘 + 𝑏)

2𝑛

𝑘=1

= 7𝑛2 + 3𝑛

𝑎(2𝑛)(2𝑛 + 1)

2
+ 𝑏(2𝑛) = 7𝑛2 + 3𝑛

𝑎𝑛(2𝑛 + 1) + 2𝑏𝑛 = 7𝑛2 + 3𝑛

2𝑎𝑛2 + (2𝑏 + 𝑎)𝑛 = 7𝑛2 + 3𝑛

In order for this equation to always be true, we have to equate coefficients, giving us the two following

simultaneous equations:

 2𝑎 = 7 2𝑏 + 𝑎 = 3

Solving the first equation, we find that 𝑎 =
7

2
. Plugging this into the second equation, we have

2𝑏 +
7

2
= 3

2𝑏 = −
1

2

𝑏 = −
1

4

Thus, the desired ordered pair (a, b) is (
7

2
, −

1

4
).

Grading: 2 pts sum of ak, 1 pt sum of b, 2 pts simplifying expression, 2 pts equating coefficients, 1

pt solving for a, 2 pts solving for b.

Page 1 of 4

Computer Science Foundation Exam

 January 15, 2022

Section D

ALGORITHMS

SOLUTION

Question # Max Pts Category Score

1 5 DSN

2 10 ANL

3 10 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2022 Section D: Algorithms

Page 2 of 4

1) (5 pts) DSN (Recursive Coding)

Consider the problem of a frog jumping out of a well. Initially, the frog is n feet below the top of the

well. When the frog jumps up, it elevates u feet. If a jump gets the frog to the top of the well or past it,

the frog escapes the well. If not, unfortunately, the frog slips down by d feet before clinging to the side

of the well. (Note that d < u.) Write a recursive function that takes in positive integers, n, u, and d, and

returns the number of times the frog must jump to get out of the well.

For example, if n = 10, u = 5 and d = 3, the function should return 4. On the first jump, the frog goes

from 10 feet below the top to 8 feet below (5-3 is the progress). On the second jump, the frog goes from

8 feet below the top to 6 feet below the top. On the third jump, the frog goes from 6 feet below the top to

4 feet below the top. On the last jump, since 5 feet is enough to clear the top of the well, the frog does

not slip down and gets out. In this case, had n = 11, the frog would have also gotten out in 4 jumps.

(Note: Although one can do some math to arrive at an O(1) solution without recursion, please use

recursion to simulate the jumping process described as this is what is being tested - the ability to take a

process and express it in code, recursively. Also, though this is a toy problem, it's surprisingly similar to

the real life process of paying off a loan, though in the latter process, the amount you "slip down" slowly

decreases, month after month.)

int numJumps(int n, int u, int d) {

 if (u >= n) return 1; // 2 pts

 return 1 + numJumps(n-(u-d), u, d); // 3 pts

}

Grading: 1 pt for checking base case, 1 pt for the return in this case.

 1 pt for adding one jump, 2 pts for the recursive call

Spring 2022 Section D: Algorithms

Page 3 of 4

2) (10 pts) ANL (Sorting)

Jesse has mistakenly written his Merge Sort so that instead of making recursive calls on each half of the

array (code below), he calls a function that runs an Insertion Sort on each half of the array. You may

assume the function insertionSort runs properly and executes the steps of an Insertion Sort. He tests his

function on an array of size 100,000 in reverse sorted order, and discovers that instead of running in

under one second, his code takes 9 seconds. How long (in seconds) would sorting the same array

(100,000 elements in reverse order), on the same computer, using a single Insertion Sort, be expected to

take?

To earn full credit, you must justify your answer by looking at the number of simple operations in

both algorithms and comparing the differences in multiplicative constants between the two

algorithms.

void mergeSort(int array[], int low, int high) {

 if (low >= high) return;

 int mid = (low+high)/2;

 insertionSort(array, low, mid);

 insertionSort(array, mid+1, high);

 merge(array, low, mid, high);

}

Let the T(n) be the run time of insertion sort on an array of size n. We know that for some constant c,

T(n) = cn2. The cost of a single merge on two arrays of size n/2 is O(n). Let S(n) = dn, for some constant

d be the run time of a Merge. This means the run time of the code for "mergeSort" written above would

take this much time to sort an array of size n.

𝟐𝑻 (
𝒏

𝟐
) + 𝑺(𝒏)

For our situation we have n = 100,000 and the amount of time the code took is 9 seconds, plugging in,

we find:

2𝑐(50000)2 + 𝑑(100000) = 9 𝑠𝑒𝑐

2(2500000000)𝑐 + 𝑑(100000) = 9 𝑠𝑒𝑐

Clearly, there are an infinite number of solutions for c and d to this equation, since there is only one

equation. But, it's fairly reasonable to assume two things: (1) the constants are similar, and (2) the

multiplier of c is so much smaller than the multiplier for d, that the second term adds a negligible

amount of time (one ten-thousandth roughly, so if I am answering in seconds, there is no change), so for

the purposes of this estimation, we can remove that term, so we have:𝟓, 𝟎𝟎𝟎, 𝟎𝟎𝟎, 𝟎𝟎𝟎𝒄 = 𝟗 𝒔𝒆𝒄.

If we were to do one Insertion sort on an array of size 100000, our run time would be c(100,000)2, so we

have:

𝑇(100,000) =
9𝑠𝑒𝑐

5 × 109
× (105)2 = 𝟏𝟖 𝒔𝒆𝒄𝒐𝒏𝒅𝒔

Grading: 5 pts for recognizing that the bulk of the code is 2 insertion sorts on arrays of size n/2. 5

pts for comparing the run time of that to 1 insertion sort of an array of size n and recognizing that

the latter takes roughly double the time.

Spring 2022 Section D: Algorithms

Page 4 of 4

3) (10 pts) DSN (Bitwise Operators)

Imagine the task of painting a picket fence with 20 pickets. Let each picket be numbered from 0 to 19,

from left to right and initially each is painted white. A pattern is 5 pickets long and can be placed with

the pattern's left end aligned with any picket in between number 0 and number 15, inclusive. (If you line

the pattern up with any of the pickets 16 through 19, the right end of the pattern goes past the right end

of the fence and this isn't allowed.) Below is a picture of an example pattern, with the 3 of the 5 possible

pickets painted:

If this pattern was lined up with picket number 4, then pickets 4, 5 and 7 would get painted. Think of the

process as a placing a stamp on a portion of the whole fence. We can represent this pattern with the

integer 11 (20 + 21 + 23), the integer where bits 0, 1 and 3 are set to 1. The bit positions represent,

relative to the left end of the pattern, which positions have paint on them.

One way to paint a fence with a pattern is to line up the pattern with a few different picket numbers and

apply the pattern. For example, if we lined up this pattern with the pickets at positions 1 and 4, then the

pickets that would be painted would be at positions 1, 2, 4, 5 and 7, which corresponds to a bitmask

value of 182. (Notice that painting an individual picket more than once leaves it still painted.)

Complete the function below so that it takes in an integer, pattern, in between 0 and 31, inclusive,

representing the pattern, an integer array, paintLoc, which stores the locations to line up the pattern with

for painting, and paintLen, representing the length of the array paintLoc and returns a single integer

storing the state of the painted fence (for each picket number, k, that is painted, bit k in the returned

integer should be set to 1). Each of the values in paintLoc will be distinct integers in between 0 and 15,

inclusive.

int paintFence(int pattern, int paintLoc[], int paintLen) {

 int res = 0; // 1 pt

 for (int i=0; i<paintLen; i++) // 2 pts

 res = res | (pattern<<(paintLoc[i])); // 6 pts

 return res; // 1 pt

}

Grading Breakdown 3rd line: 1 pt for update res, 2 pts for |, 2 pts for shifting pattern, 1 pt for

shifting it by paintLoc[i].

