
Page 1 of 4

Computer Science Foundation Exam

January 11, 2020

Section I A

DATA STRUCTURES

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: __

UCFID: __

NID:

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2020 Data Structures Exam, Part A

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Suppose we have an array to store the TV shows we wanted to watch over break. Now that the break is

over, we have watched all the shows and we need to delete our list. Our array is an array of structures that

contains the name of each show and the number of seasons to watch for that show. The name of the show

is a dynamically allocated string to support the different lengths of show names. Write a function called

delete_show_list that will take in the show array as well as the length of that array, and free all the memory

space that the array previously took up. Your function should take in 2 parameters: the array called

show_list and the length of that array, length. It should free all the dynamically allocated memory

associated with the list and return NULL, to indicate that the list has been deleted.

struct tv_show {

 char *show_name;

 int number_of_seasons;

};

struct tv_show * delete_show_list (struct tv_show *show_list, int length) {

 int i;

 for(i = 0; i < length; i++) // 2 pts

 free(show_list[i].show_name); // 3 pts

 free(show_list); // 3 pts

 return NULL; // 2 pts

}

Spring 2020 Data Structures Exam, Part A

Page 3 of 4

2) (5 pts) ALG (Linked Lists)

Suppose we have a linked list implemented with the structure below. We also have a function that takes

in the head of the list and the current number of nodes in the list.

typedef struct node {

 int num;

 struct node* next;

} node;

int whatDoesItDo (node * head, int size) {

 node * current = head;

 node * other;

 if (size < 2)

 return size;

 other = head->next;

 while (current != NULL) {

 current->next = other->next;

 free(other);

 current = current->next;

 size--;

 if(current != NULL && current->next !=NULL) {

 current = current->next;

 other = current->next;

 }

 }

 return size;

}

If we call what DoesItDo(head, 8) on the following list, show the list after the function has finished and

state the return value.

head -> 3 -> 8 -> 12 -> 5 -> 1 -> 7 -> 19 -> 2

Picture of List Pointed to by head After Function Call:

Head -> 3 -> 12 -> 5 -> 7 -> 19

Function Return Value: 5

Grading: 2 pts for return value (all or nothing), 3 pts for list, give 3 pts if correct, give 2 pts if off

by 1 item, 1 pt if off by 2 items, 0 otherwise

Spring 2020 Data Structures Exam, Part A

Page 4 of 4

3) (10 pts) DSN (Stacks)

Suppose we have implemented a stack using a linked list. The structure of each node of the linked list is

shown below. The stack structure contains a pointer to the head of a linked list and an integer, size, to

indicate how many items are on the stack.

typedef struct node {

 int num;

 struct node* next;

} node;

typedef struct Stack {

 struct node *top;

 int size;

} stack;

Write a function that will pop off the contents of the input stack and push them onto a newly created stack,

returning a pointer to the newly created stack. In effect, your function should reverse the order of the items

in the original stack, placing them in a new stack. Assume you have access to all of the usual stack

functions. Assume that when you push an item onto the stack, its size automatically gets updated by the

push function. Similarly for pop, size gets updated appropriately when you pop an item from a stack. Do

NOT call pop or peek on an empty stack.

void push(stack *s, int number); // Pushes number onto stack.

int pop(stack *s); // Pops value at top of stack, and returns it.

int peek(stack *s); // Returns value at top of stack.

int isEmpty(stack *s); // Returns 1 iff the stack is empty.

stack* reverseStack(stack* s) {

 stack *newS = malloc(sizeof(stack));

 news->size = 0; // 2 pts

 newS->top = NULL; // 2 pts

 while(!isEmpty(s)) // 3 pts

 push(newS, pop(s)); // 3 pts

 return newS;

}

Page 1 of 4

Computer Science Foundation Exam

 January 11, 2020

Section I B

DATA STRUCTURES

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Name: __

UCFID: __

NID:

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25 ---

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Spring 2020 Data Structures Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Binary Trees)

Write a function named fsl() (which stands for “find smallest leaf”) that takes a pointer to the root of a

binary tree as its only argument and returns the value of the smallest leaf node in the tree. Note that the

tree passed to your function will not necessarily be a binary search tree. If the pointer root is NULL, fsl

should return INT_MAX, which is defined below.

You cannot write any helper functions for this problem. You must complete all of your work in a single

function. The function signature and node struct are given below.

#define INT_MAX 2147483647

typedef struct node {

 int data;

 struct node *left;

 struct node *right;

} node;

int fsl(node *root) {

 int l_min;

 int r_min;

 if (root == NULL) // 2 pts: checking for NULL as base case

 return INT_MAX; // 1 pt

 if (root->left == NULL && root->right == NULL) // 2 pts: identify leaf

 return root->data; // 1 pt: correct return

 // value when leaf

 // is encountered

 l_min = fsl(root->left); // 2 pts: correct recursive calls (give

 r_min = fsl(root->right); // only 1 pt here if only one recursive

 // call)

 return (l_min < r_min) ? l_min : r_min); // 2 pts: returning min of

 // these two values

}

Spring 2020 Data Structures Exam, Part B

Page 3 of 4

2) (5 pts) ALG (Hash Tables)

Consider the following hash function, and then answer the questions that follow:

 // This function assumes str is non-NULL and non-empty.

 int hash(char *str) {

 int index = strlen(str) – 1;

 // Note: This converts letters on the range 'a' through 'z' or

 // 'A' through 'Z' to integers on the range 0 through 25.

 // For example: 'a' -> 0, 'b' -> 1, ..., 'z' -> 25.

 return tolower(str[index]) – 'a';

 }

a) (2 pts) Give the hash code produced for each of the following strings:

 hash(“Not”) = ___19___ Points are based on number of correct answers:

 hash(“Know”) = ___22___ 0 or 1 correct answers -> 0 out of 2 points

 hash(“Bright”) = ___19___ 2, 3, or 4 correct answers -> 1 out of 2 points

 hash(“Moon”) = ___13___ 5 correct answers -> 2 out of 2 points

 hash(“Now”) = ___22___

b) (3 pts) Using the hash values above, insert the strings (one by one, in the order given above) into the

following hash table. Use quadratic probing to resolve any collisions. Note that there is a standard

technique for dealing with hash values that exceed the length of a table (e.g., values that exceed 9 in the

case of this particular table), and it’s up to you to use that technique here.

Note: The length of the hash table is 10.

Bright

Know

Moon

Now

Not

0 1 2 3 4 5 6 7 8 9

Grading: 1 pt for “Now” being in correct spot, 2 pts for all other strings being in correct spots.

Spring 2020 Data Structures Exam, Part B

Page 4 of 4

3) (10 pts) DSN (Tries)

It's often useful to know how many words start with a particular prefix. Given a trie that stores a dictionary

of valid words (lowercase letters only) as well as a prefix string, write a non-recursive function that

calculates the number of words that begin with that prefix. To aid you in your solution, the struct that

stores a trie node will not only store whether or not that node represents a word or not, but it will also

store the total number of words stored within that subtree of the trie in a variable called numwords. You

may assume that the TrieNode pointer passed to the function represents the root of the whole trie storing

the dictionary of words. You may assume that root is NOT NULL and prefix has at least one lowercase

letter in it.

#include <string.h>

typedef struct TrieNode {

 struct TrieNode *children[26];

 int flag; // 1 if the string is in the trie, 0 otherwise

 int numwords; // the total # of words stored in this sub-trie.

} TrieNode;

int numWordsWithPrefix(TrieNode* root, char* prefix) {

 // 1 pt var declarations.

 int i, len = strlen(prefix);

 // 1 pt loop

 for (i=0; i<len; i++) {

 // 3 pts NULL check

 if (root->children[prefix[i]-'a'] == NULL)

 // 1 pt return for this case.

 return 0;

 // 3 pts advancing pointer down trie.

 root = root->children[prefix[i]-'a'];

 }

 // 1 pt return value.

 return root->numwords;

}

Page 1 of 4

Computer Science Foundation Exam

 January 11, 2020

Section II A

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Score

1 5 ANL

2 10 ANL

3 10 ANL

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib.h, stdio.h, math.h,

string.h) for that particular question have been made.

Spring 2020 Algorithms and Analysis Tools Exam, Part A

Page 2 of 4

1) (5 pts) ANL (Algorithm Analysis)

What is the best and worst case runtime for the following algorithm, in terms of the input parameter n?

Give a brief explanation for your answers.

int foo(int * arr, int n){

 if (n == 0)

 return 0;

 int j = 0, i;

 for (i = 0; i < n; i++)

 if (arr[i] > arr[j])

 j = i;

 int nLen = n - j - 1;

 return arr[j] + foo(arr + j + 1, nLen);

}

Best Case

The for loop runs and sets j = n - 1, which means that nLen gets set to 0. In this case, the subsequent

recursive call will immediately return 0 and the original recursive call will return the value of the last

array element. The run time in this case is O(n), since the entirety of the execution includes one for loop

that runs n times and a few other simple statements. From a conceptual standpoint, the for loop identifies

the index in between 0 and n-1 that stores the largest value within that range.

Worst Case

The worst case is when the array is sorted in reverse order. Every call eliminates only 1 value at the cost

of n operations. The total runtime becomes O(n2).

Grading: 2 pts for each answer, 1 pt for all of the explanation.

Spring 2020 Algorithms and Analysis Tools Exam, Part A

Page 3 of 4

2) (10 pts) ANL (Algorithm Analysis)

A backtracking solution took O(n(kn)) time where n is the number of decisions, and k was the number of

options for each decision. With n of 20 and k of 1 the time it took was approximately 10 seconds. What

is the expected time required for an input of 10 decisions (n=10) where each decision has 2 options

(k=2) in seconds?

The runtime is in seconds can be expressed as cn(kn) where c is some constant. We can find the c by

plugging in n=20 and k=1 and setting the results to 10. We find that

10𝑠 = 𝑐20(120)
10𝑠

20(1)
= 𝑐

𝑐 = .5𝑠

To solve for the question we plug in n=10 and k=2.

𝐴𝑛𝑠𝑤𝑒𝑟 = (. 5𝑠)10(210)

= 5𝑠(1024)

= 5120𝑠

Grading:

Find c, 4 pts.

Plugging in 10 and 2, 4 pts.

Correct answer, 2 pts.

Spring 2020 Algorithms and Analysis Tools Exam, Part A

Page 4 of 4

3) (10 pts) ANL (Recurrence Relations)

Use the iteration technique to solve the following recurrence relation in terms of n:

𝑇(𝑛) = 2𝑇(𝑛/2) + 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 > 1

𝑇(1) = 1

Find a tight Big-Oh answer.

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 1

𝑇 (
𝑛

2
) = 2𝑇 (

𝑛

4
) + 1

𝑇(𝑛) = 2 (2𝑇 (
𝑛

4
) + 1) + 1

𝑇(𝑛) = 4𝑇 (
𝑛

4
) + 2 + 1

𝑇(𝑛) = 4𝑇 (
𝑛

4
) + 3

𝑇 (
𝑛

4
) = 2𝑇 (

𝑛

8
) + 1

𝑇(𝑛) = 4 (2𝑇(
𝑛

8
) + 1) + 3

𝑇(𝑛) = 8𝑇(
𝑛

8
) + 4 + 3

𝑇(𝑛) = 8𝑇(
𝑛

8
) + 7

Based on these three iterations, we see that after k iterations, the recurrence is

𝑇(𝑛) = 2𝑘𝑇(
𝑛

2𝑘
) + (2𝑘 − 1)

Plug in the value of k such that
𝑛

2𝑘 = 1 to this recurrence. This means that 2𝑘 = 𝑛. Substituting, we get:

𝑇(𝑛) = 𝑛𝑇(1) + (𝑛 − 1)

𝑇(𝑛) = 𝑛 + (𝑛 − 1)

𝑇(𝑛) = 2𝑛 − 1

It follows that T(n) = O(n).

Grading: 2 pts for iteration with T(n/4), 2 pts for T(n/8). 2 pts for general expression after k

iterations, 1 pt for the value to plug in for k. 3 pts to finish the problem.

Page 1 of 4

Computer Science Foundation Exam

 January 11, 2020

Section II B

ALGORITHMS AND ANALYSIS TOOLS

SOLUTION

NO books, notes, or calculators may be used,

and you must work entirely on your own.

Question # Max Pts Category Score

1 10 DSN

2 10 DSN

3 5 ALG

TOTAL 25

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Spring 2020 Algorithms and Analysis Tools Exam, Part B

Page 2 of 4

1) (10 pts) DSN (Recursive Coding)

Model an area of land as a two dimensional grid of integers, where each integer represents the elevation

of that portion of land. Water can only flow from a grid square of higher elevation to lower elevation in

one of the four cardinal directions (north, south, east and west). Complete the recursive function below

that takes in a 2D array of integers storing the elevation levels of each portion of land, another 2D array

of integers (storing 0 or 1 in each entry) representing which grid squares have been flooded with water

(1 for flooded, 0 for not flooded), as well as the current row and column value of a grid square that just

flooded, and marks the current and all subsequent squares that will get flooded as a result of the water at

the given location. Once a square is flooded it remains in that state. An inbounds function and DR,DC

arrays are provided for convenience.

#define NUMROWS 10

#define NUMCOLS 12

const int DR[] = {-1,0,0,1};

const int DC[] = {0,-1,1,0};

int inbounds(int row, int col);

void floodfill(int grid[][NUMCOLS], int flooded[][NUMCOLS], int row, int col) {

 if (!inbounds(row, col)) return; // Grading: 2 pts

 flooded[row][col] = 1 ; // Grading: 1 pt

 for (int i=0; i<4; i++) {

 int nextR = row + DR[i] ; // Grading: 2 pts

 int nextC = col + DC[i] ; // Grading: 2 pts

 if (grid[nextR][nextC] < grid[row][col]) // Grading: 3 pts

 floodfill(grid, flooded, nextR, nextC);

 }

}

int inbounds(int row, int col) {

 return row >= 0 && row < NUMROWS && col >= 0 && col < NUMCOLS;

}

Grading Notes: Give partial credit for slots as necessary, subtract a total of 2 points if rows and

columns are switched consistently (the function prototype infers that columns is the second index),

don't take off for any extra checks such as seeing if flooded is 0 before doing the recursion…this

turns out not to be necessary due to the acyclic structure of this specific problem.

Spring 2020 Algorithms and Analysis Tools Exam, Part B

Page 3 of 4

2) (10 pts) DSN (Sorting)

The partition function in quick sort takes in an array, a low index, and a high index, which specifies a

subsection of the array to partition, and returns the index where the partition element lies after

performing the partition. Though there are many strategies to pick the partition element, to make grading

easier, do the following: (a) use the element initially in index low to be the partition element, and (b)

execute the in place partition where pairs of elements which are out of place are swapped and the

partition element is swapped into its correct location at the very end right before the function returns this

location. The swap function is provided for your use. You may assume that low < high.

void swap(int* ptrA, int* ptrB);

int partition(int array[], int low, int high) {

 int lowPtr = low+1, highPtr = high;

 while (lowPtr <= highPtr) {

 while (lowPtr <= high && array[lowPtr] <= array[low])

 lowPtr++;

 while (highPtr >= low && array[highPtr] > array[low])

 highPtr--;

 if (lowPtr < highPtr)

 swap(&array[lowPtr], &array[highPtr]);

 }

 swap(&array[low], &array[highPtr]);

 return highPtr;

}

void swap(int* ptrA, int* ptrB) {

 int temp = *ptrA;

 *ptrA = *ptrB;

 *ptrB = temp;

}

Grading: Code can be expressed in quite a few ways. Assign points to each of the following parts

of the overall structure.

Outer loop set up with 2 indexes - 2 pts

Inner loop to advance low index - 2 pts

Inner loop to advance high index - 2 pts

Swap code for out of place elements - 2 pts

Last swap - 1 pt

Return - 1 pt

Spring 2020 Algorithms and Analysis Tools Exam, Part B

Page 4 of 4

3) (5 pts) ALG (Bitwise Operators)

Determine the value of each of these arithmetic expressions in C. Please use the space below for your

scratch work.

(i) 56 | 17 57

(ii) 47 & 83 3

(iii) 79 ^ 36 107

(iv) 13 << 3 104

(v) 187 >> 4 11

Here is the work for each part:

56 = 1110002 47 = 1011112 79 = 10011112

|17 = 0100012 &83 = 10100112 ^36 = 1001002

 ------ ------- -------

 1110012 = 5710 00000112 = 310 1101011 = 10710

13 << 3 = 13 * 23 = 13 * 8 = 104

187 >> 4 = 187 / 24 = 11

Note: Here are the last two parts using binary representation:

13 = 11012, 11012 << 3 = 11010002 = 104

187 = 101110112, 101110112 >> 4 = 10112 = 11

Grading: 1 pt per part, no work necessary, only answers graded.

