
Page 1 of 6

Computer Science Foundation Exam

 May 8, 2015

Section I B

COMPUTER SCIENCE

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Passing Score

1 10 ANL 7

2 10 ANL 7

3 10 DSN 7

4 10 DSN 7

5 10 ALG 7

TOTAL 50 35

You must do all 5 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat.

Spring 2015 Computer Science Exam, Part B

Page 2 of 6

1) (10pts) ANL (Algorithm Analysis)

Consider the following function shown below:

double harmonic(int n) {

 if (n == 1)

 return 1.0;

 return 1.0/n + harmonic(n-1);

}

(a) (3 pts) Let T(n) be the runtime of harmonic with an input of size n. Write a recurrence relation that

T(n) satisfies, assuming that a constant number of simple operations takes 1 unit of time.

T(n) = T(n-1) + O(1), because our recursive call has input n-1 and the extra work we do is

constant. (Grading: 1 pt for each component.)

T(1) = O(1), because it is computed in constant time.

(b) (7 pts) Use the iteration technique to solve for T(n). Note: You may assume T(1) = 1.

T(n) = T(n-1) + 1

T(n) = T(n-2) + 1 + 1 = T(n-2) + 2 (Grading - 1 pt)

T(n) = T(n-3) + 1 + 2 = T(n-3) + 3 (Grading -1 pt)

In general, we have:

T(n) = T(n-k) + k (Grading - 2 pts)

Plugging in k = n-1, we have:

T(n) = T(n-(n-1)) + (n-1) (Grading - 1 pt)

 = T(1) + (n-1) (Grading - 1 pt)

 = 1 + n - 1 = n. (Grading - 1 pt)

Spring 2015 Computer Science Exam, Part B

Page 3 of 6

2) (10 pts) ANL (Algorithm Analysis)

(a) (5 pts) An algorithm runs in O(lg2 n) time. It takes 36 ns for an input size of 8. If another run of the

algorithm takes 48 ms, how large was the input? Simplify your answer to a single integer.

Let T(n) be the run time of the algorithm. We have:

T(n) = C * lg n (Grading - 1 pt)

T(8) = C * lg 8 = 36 ns (Grading - 1 pt)

 C = 36/3 = 12 ns (Grading - 1 pt)

Let x be experimental input size

T(x) = C * lg x = 48

lg x = 48 ns/12 ns =4 (Grading - 1 pt)

x = 24 = 16 (Grading - 1 pt)

(b) (5 pts) A search algorithm performs a single search on a database of n elements in O(√𝑛) time. If

1,000,000 of these searches can be performed on a database of size 10000 in 8 seconds, how long would

500,000 searches take on a database of size 640000?

Let 𝑻(𝒏) = 𝒄√𝒏 be the run time of one search. Thus, a million searches would take 1000000T(n).

The initial given input size is n = 10000. Thus, we have:

𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝒄√𝟏𝟎𝟎𝟎𝟎 = 𝟖𝒔𝒆𝒄

𝟏𝟎𝟎𝟎𝟎𝟎𝟎𝒄(𝟏𝟎𝟎) = 𝟖𝒔𝒆𝒄

𝟏𝟎𝟖𝒄 = 𝟖𝒔𝒆𝒄

𝒄 =
𝟖

𝟏𝟎𝟖
𝒔𝒆𝒄 = 𝟖𝟎 𝒏𝒔

The desired run time for the new set of searches is:

𝟓𝟎𝟎𝟎𝟎𝟎𝒄√𝟔𝟒𝟎𝟎𝟎𝟎 = 𝟓(𝟏𝟎𝟓) ×
𝟖𝒔𝒆𝒄

𝟏𝟎𝟖
× 𝟖𝟎𝟎 = 𝟒(𝟏𝟎𝟖) ×

𝟖𝒔𝒆𝒄

𝟏𝟎𝟖
= 𝟑𝟐𝒔𝒆𝒄

Grading: 3 pts for solving for c, 2 pts for plugging in this value to solve for the new time.

Spring 2015 Computer Science Exam, Part B

Page 4 of 6

3) (10 pts) DSN (Linked Lists)

Given a pointer to a singly linked list in which each node contains an integer, write a function called

getNumOdd that

 a) counts the number of odd values in the list

 b) inserts a new node at the front of the list to indicate the number of odd values found

 c) returns a pointer to the updated list.

Note: Your input list may be empty, but pointer returned must point to a list with at least one element.

Use the struct definition provided below.

typedef struct node {

 int data;

 struct node* next;

} node;

node* getNumOdd(node* front) {

 node *temp = front; // 1 pt

 int count = 0; // 1 pt

 while(temp!= NULL) { // 1 pt

 if(temp->value %2 != 0) // 1 pt

 count++; // 1 pt

 temp = temp->next; // 1 pt

 }

 temp = malloc(sizeof(struct node)); // 1 pt

 temp -> value == count; // 1 pt

 temp->next = front; // 1 pt

 return temp; // 1 pt

}

Spring 2015 Computer Science Exam, Part B

Page 5 of 6

4) (10 pts) DSN (Binary Trees)

Write a function that is given a pointer to the root of a valid binary search tree with unique elements and

prints out a list of all the odd numbers stored in the binary search tree, in descending order. Use the

struct definition and function prototype provided.

typedef struct treenode {

 int data;

 struct treenode *left;

 struct treenode *right;

} treenode;

void printOddDescending(treenode* root) {

 if (root == NULL) return; // 1 pt

 printOddDescending(root->right); // 2 pts

 if (root->data%2 == 1) // 2 pts

 printf("%d ", root->data); // 1 pt

 printOddDescending(root->left); // 2 pts

 // 2 pts for correct

 // order of calls.

}

Spring 2015 Computer Science Exam, Part B

Page 6 of 6

5) (10 pts) ALG (Sorting)

1. (a) (6 pts) Given the array below, show the state of the array after each iteration of the loop in

the bubble sort algorithm

Index 0 1 2 3 4 5 6

Value 25 83 14 72 70 65 11

Index 0 1 2 3 4 5 6

1st

iteration
25

14 72 70 65 11 83

2nd

iteration
14 25 70 65 11 72 83

3rd

iteration
14 25 65 11 70 72 83

4th

iteration
14 25 11 65 70 72 83

5th

iteration
14 11 25 65 70 72 83

6th

iteration
11 14 25 65 70 72 83

Grading: 1 pt per row, row must be perfectly correct to get the point.

(b) (4 pts) What are the average case and worst case run times of each of the following sorting

algorithms, for sorting n items? Please give a Big-Oh bound for each.

Sort Average Case Run Time Worst Case Run Time

Insertion Sort O(n2) O(n2)

Selection Sort O(n2) O(n2)

Merge Sort O(nlgn) O(nlgn)

Quick Sort O(nlgn) O(n2)

Grading: 1/2 pt per item, round down.

