
Page 1 of 6 

 

 

Computer Science Foundation Exam 

 May 2, 2014 

Section I B 

COMPUTER SCIENCE  

NO books, notes, or calculators may be used,  

and you must work entirely on your own. 

 

SOLUTION 
 
 

Question # Max Pts Category Passing Score 

1 10 ANL 7  

2 10 DSN 7  

3 10 DSN 7  

4 10 ALG 7  

5 10 ALG 7  

TOTAL 50  35  
  

  

You must do all 5 problems in this section of the exam. 
 

Problems will be graded based on the completeness of the solution steps and not 

graded based on the answer alone. Credit cannot be given unless all work is shown 

and is readable. Be complete, yet concise, and above all be neat.       

 
 

 

 

 



Spring 2014 Computer Science Exam, Part B  

 

Page 2 of 6 

 

1) (10pts) ANL (Algorithm Analysis)   

 

In a game of golf, the winner is the person with the lowest number of strokes.  Given n golf scores 

determine the following. 

 

(a) (1 pt) What is the run time of generating an unsorted array of these n values?  Provide a theta run-time 

in terms of n. 

 

 O(n).  Reading in the values takes O(n) time, constant time for each value. (1 pt) 

 

(b) (3 pts) What is the run-time of generating an sorted array of these n values, assuming a Merge Sort is 

used?  Assume an efficient implementation. Provide a theta run-time in terms of n. Justify your answer. 

 

 

O(nlogn).  Reading in the values takes O(n) time and sorting those values takes O(nlogn), the 

worst case time of Merge Sort. Adding, we get O(nlogn). (1 pt ans, 2 pts explanation) 
 

(c) (3 pts) Suppose we wished to show ONLY the winner’s score.  In this case, which of the following is 

more efficient?  Justify your answer. 

 

- Generating the array as in part a and performing a linear search 

- Generating the array as in part b and performing a binary search 

 

Linear Search.  Since we are only interested in the lowest value this process takes O(n) to 

read in the values and O(n) to perform a linear search on the unsorted list.  Added this 

requires O(n) time to complete.  

 

Sorting the array using Merge Sort takes O(nlogn).  Performing a binary search is not 

strictly necessary, we can find the lowest value in O(1) time.  Added this requires O(nlogn) 

to complete. 

 

(1 pt answer, 2 pts explanation) 

 

(d) (3 pts) Suppose we wished to show all the scores in ascending order.  In this case, which of the 

following is more efficient?  Justify your answer. 

 

- Generating the array as in part a and performing n linear searches 

- Generating the array as in part b and outputting it 

 

Binary Search.  In this case we are interested in all n values in sorted order.  Sorting the 

array using Merge Sort takes O(nlogn) time and printing each value takes O(n).  Added, this 

required O(nlogn) time.  

 

The linear search solution requires us to search for each new lowest value to print out, which 

is O(n) for each of the n values for a total time of O(n2). 

 

(1 pt answer, 2 pts explanation) 

 



Spring 2014 Computer Science Exam, Part B  

 

Page 3 of 6 

 

2) (10 pts) DSN (Recursive Algorithms – Binary Trees) 

 

Write a recursive function validTotal that returns the sum of values in a binary tree whose data 

values fall within input parameters min and max, inclusive.  The tree, the minimum valid number, and 

the maximum valid number are inputs to the function.   

 

Use the following struct definition: 
 

typedef struct treenode { 

    int data; 

    struct treenode *left; 

    struct treenode *right; 

} treenode; 
 

 

int validTotal(treenode* root, int min, int max) { 

 

 // 2 pts for this case. 

 if (root == NULL) 

   return 0; 

 

 // 4 pts for this case – 2 pts for root, 1 pt for each rec call 

if (root->data >= min && root->data <= max) 

 return root->data + validTotal(root->left, min, max) +  

     validTotal(root->right, min, max); 

 

// 4 pts for this case – 2 pts for each rec call here 

else 

 return validTotal(root->left, min, max) +  

    validTotal(root->right, min, max); 

 

 

 

 

 

} 



Spring 2014 Computer Science Exam, Part B  

 

Page 4 of 6 

 

3) (10 pts) DSN (Linked Lists) 

 

Write a recursive function, insertName, that adds a new node in lexicographical order, as defined 

by strcmp in string.h, to the list pointed to by the input parameter front. Your function should return 

the front of the resulting list.  You may assume that string.h has been included. 

 

Use the struct definition provided below. 
 

typedef struct node { 

    char* name; 

    struct node* next; 

} node; 

 

node* insertName(node* front, char* newname) { 

 

    //initialization – 3 pts 1 per line. 

    node* tmp = malloc(sizeof(node)); 

    tmp->name = (char *)malloc(sizeof(char)*(1+strlen(newname))); 

    strcpy(tmp->name, newname); 

  

 

    //check front of list – 2 pts if, 2 pts link and return 

    if (front == NULL || strcmp(tmp->name, front->name) <= 0) { 

        tmp->next = front; 

        return tmp;     

    } 

  

    // Recursive insert – critical to set return value to next 

    // pointer of front node. 

    front->next = insertName(front->next, newname);   // 2 pts 

    return front;        // 1 pt 

} 

  



Spring 2014 Computer Science Exam, Part B  

 

Page 5 of 6 

 

4) (10 pts) ALG (Stacks and Queues) 

 

Complete a linked list implementation of stack functions empty() and push(), keeping your code consistent 

with what is provided below to maintain a stack of positive integers. (Note: This isn’t necessarily the most 

desirable way to set up this code. You’re simply being tested on the mechanics of how this works and 

writing code consistent to a convention you haven’t chosen.) 

 
#include <stdio.h> 

#include <stdlib.h> 

 

#define EMPTY 0 

 

typedef struct node { 

    int data; 

    struct node *next; 

} node; 

 

typedef struct stack { 

    node* front; 

} stack; 

 

void init(stack* myStack) { 

    myStack->front = NULL; 

} 

 

int empty(stack* myStack) { 

     

    return myStack->front == NULL;  // 2 pts 

 

} 

 

void push(stack* myStack, int value) { 

 

    node* newNode = malloc(sizeof(node));  // 2 pts 

    newNode->data = value;    // 2 pts 

    newNode->next = myStack->front;   // 2 pts 

    myStack->front = newNode;    // 2 pts 

 

} 

 

int pop(stack* myStack) { 

 

    if (empty(myStack)) return EMPTY; 

 

    int retval = myStack->front->data; 

    node* freeNode = myStack->front; 

    myStack->front = myStack->front->next; 

    free(freeNode); 

    return retval; 

} 

 

int top(stack* myStack) { 

    if (empty(myStack)) return EMPTY; 

    return myStack->front->data; 

} 

 



Spring 2014 Computer Science Exam, Part B  

 

Page 6 of 6 

 

5) (10 pts) ALG (Sorting)  

 

(a) (5 pts) Consider sorting the array below using Selection Sort, where after the first iteration, the 

minimum value in the array is in its correct location. Show the contents of the array after each iteration 

of the outer loop.  

 

 

Original 3 2 5 1 6 4 

1st iteration 1 2 5 3 6 4 

2nd iteration 1 2 5 3 6 4 

3rd iteration 1 2 3 5 6 4 

4th iteration 1 2 3 4 6 5 

5th iteration 1 2 3 4 5 6 

 

Grading: 1 pt per row, award only if the row is perfectly correct. 

 

(b) (5 pts) Consider running a Merge Sort on the array shown below. Show the contents of the array right 

before the LAST merge is executed.   

 

 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Values 11 48 83 7 1 77 67 61 90 75 54 23 64 42 65 93 

 

 

 

 

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Values 1 

 

7 11 48 61 67 77 83 23 42 54 64 65 75 90 93 

 

 

Grading: Correct = 5 pts 

                If pairs are sorted only – 1 pt,  

                If list is all sorted – 0 pts,  

                If there are fewer than 5 errors, 1 pt off per error 

     If there are 5 or more errors and they don’t appear to be systematic – 0 

 

 

 

 

 


