
Page 1 of 4

Computer Science Foundation Exam

August 23, 2025

Section A

BASIC DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Fall 2025 Section A: Basic Data Structures

Page 2 of 4

1) (10 pts) DSN (Dynamic Memory Management in C)

Consider the following typedef struct definition that represents a basic bank checking account.

//struct representing basic checking account

typedef struct {

 char * name;

 double amount;

 int id;

} account_t;

Complete the following user defined function mergeAccounts. The function will combine two

accounts (that were already declared with proper information) into one account. Please note that both

structs acct1 and acct2 were both dynamically allocated in the heap space. You will need to

properly allocate a new struct in the heap space that will store the combined information. That means

the following is going to happen:

• The names will be merged with acct1 name followed by acct2. Both names will be separated

with the word “and”. Example let’s say acct1 name is "Sonic" and acct2 is "Amy". That

means the new account name would be "Sonic and Amy". Make sure there’s enough space to

hold the updated name with the word “and”, including the two spaces.

• The amounts will be summed together.

• The id of the merge account will be the original id of acct2.

• No changes should be made to acct1 and acct2.

The function returns the heap address of the new struct.

account_t * mergeAccounts (account_t * acct1, account_t * acct2) {

 // Grading: 2 pts

account_t * newacct = malloc(sizeof(account_t));

 // Grading: 5 pts (1 pt per line)

int stringSize = strlen(acct1->name) + strlen(acct2->name) + 6;

newacct->name = malloc(sizeof(char) * stringSize);

strcpy(newacct->name, acct1->name);

strcat(newacct->name, " and ");

strcat(newacct->name, acct2->name);

 // Grading: 2 pts (1 pt per line)

newacct->amount = acct1->amount + acct2->amount;

newacct->id = acct2->id;

 // Grading: 1 pt

 return newacct;

}

Fall 2025 Section A: Basic Data Structures

Page 3 of 4

2) (5 pts) ALG (Linked Lists)

Suppose we have a singly linked list implemented with the structure below and a function that takes in

the head of the list and an integer.

typedef struct node_s {

 int data;

 struct node_s * next;

} node_t;

node_t* mysterious(node_t * head, int k){

 if (k == 0 || head == NULL)

 return head;

 for (int i = 0; i < k; ++i){

 node_t *curr = head;

 while (curr->next != NULL)

 curr = curr->next;

 curr->next = head;

 curr = curr->next;

 head = head->next;

 curr->next = NULL;

 }

 return head;

}

If we call head = mysterious(head, 3); on the following list, show the list after the function has finished.

head -> 6 -> 8 -> 4 -> 7 -> 5? Please fill in the designated slots below.

head → 7 → 5 → 6 → 8 → 4

Grading: Full credit for a correct answer.

 3/5 for a cyclic rotation off by one (4,7,5,6,8 or 5,6,8,4,7)

 Otherwise just give 1 pt per correct slot

Fall 2025 Section A: Basic Data Structures

Page 4 of 4

3) (10 pts) DSN (Queues)

We are going to simulate a simple battle game involving players in a queue. The battle game has the

following rules.

• The game involves several battles. Each battle will involve the two front players in the queue.

• The winner of the battle is determined by figuring out who has more hp. In the case that both

players have the same hp, the second player in line is the winner of the round.

• The loser of the game is removed completely and the winner is added to the back of the queue.

• The game is over when there is 1 player remaining in the queue.

Complete the following function battleGame that simulates this game. You are provided the following

structure definition and helper functions that have been implemented already. You must utilize them

reasonably for full credit. The function should print the name of the player that won the game. It is

guaranteed that the queue pointed to by gameQueue has at least one player in it.

typedef struct player_s {

 char * name;

 int hp;

 struct player_s* next;

} player_t;

typedef struct {

 player_t* front;

 player_t* back;

 int size ;

} queue_t;

void enqueue(queue_t* gameQueue, player_t* player);//enqueues player to gameQueue

int size(queue_t* gameQueue) ; // returns # of elements in gameQueue

player_t* dequeue(queue_t* gameQueue); // removes front node, returns ptr to it

player_t* front(queue_t * gameQueue); // returns pointer to front node.

void deletePlayer(player_t * player); // frees memory pointed to by player

void battleGame(queue_t * gameQueue) {

 while(size(gameQueue) > 1) { // 1 pt

 player_t * p1 = dequeue(gameQueue); // 1 pt

 player_t * p2 = dequeue(gameQueue); // 1 pt

 if(p1->hp > p2->hp) { // 1 pt

 deletePlayer(p2); // 1 pt

 enqueue(gameQueue, p1); // 1 pt

 }

 else {

 deletePlayer(p1); // 1 pt

 enqueue(gameQueue, p2); // 1 pt

 }

 }

 player_t * winner = front(gameQueue); // 1 pt

 printf("%s is the winner.\n", winner->name); // 1 pt
}

Page 1 of 4

Computer Science Foundation Exam

August 23, 2025

Section B

ADVANCED DATA STRUCTURES

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 5 DSN

2 10 ALG

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for that

particular question have been made.

Fall 2025 Section B: Advanced Data Structures

Page 2 of 4

1) (5 pts) DSN (Binary Trees)

A binary tree is stored using the struct definition below. Write a recursive function that returns the

sum of the data values stored in the tree pointed to by the parameter root.

typedef struct treenode {

 int data;

 struct treenode *left;

 struct treenode *right;

} treenode;

int sumData(treenode* root) {

 // 1 pt

 if (root == NULL)

 return 0;

 // 4 pts – 1 pt each part

 return root->data + sumData(root->left) + sumData(root->right);

}

Fall 2025 Section B: Advanced Data Structures

Page 3 of 4

2) (10 pts) ALG (Heaps)

Consider a min-heap represented below in its array representation (root stored in index 1):

Index 1 2 3 4 5 6 7 8

Value 6 33 9 41 36 12 100 50

(a) (3 pts) Insert the value 32 into this heap and show its new array representation. (Note: feel free to jot

down the tree version before copying your answer over into the array shown below.)

Index 1 2 3 4 5 6 7 8 9

Value 6 32 9 33 36 12 100 50 41

Grading: 1 pt for keeping 6, 9, 36, 12, 100 and 50 in the same place

 1 pt for placement of 32

 1 pt for placement of both 33 and 41

(b) (3 pts) Insert the value 3 into the heap AFTER part (a) is done and show its new array

representation.

Index 1 2 3 4 5 6 7 8 9 10

Value 3 6 9 33 32 12 100 50 41 36

Grading: 1 pt for keeping 9, 33, 12, 100, 50 and 41 in th same place

 1 pt for placement of both 3 and 6

 1 pt for placement of both 32 and 36

(c) (4 pts) Delete the minimum value in the heap AFTER part (b) is done (this is 3) and show its new

array representation.

Index 1 2 3 4 5 6 7 8 9

Value 6 32 9 33 36 12 100 50 41

Grading: 1 pt for keeping 9, 33, 12, 100, 50 and 41 in the same place

 1 pt for placement of 6

 1 pt for placement of 32

 1 pt for placement of 36

Fall 2025 Section B: Advanced Data Structures

Page 4 of 4

3) (10 pts) DSN (Tries)

Assume that a dictionary of words is already stored in a trie with the struct shown below. Complete the

function below so that it prints out ALL of the words stored in the dictionary of length LENGTH (constant)

in alphabetical order. (Note: students often get tripped up about when to use the NULL character, so that

code’s been provided for you. A correct response won’t require ever writing ‘\0’ in the space you’re

given.) The necessary support code is given below.

#define LENGTH 10

typedef struct TrieNode {

 struct TrieNode *children[26];

 int isWord; // 1 if the string is in the trie, 0 otherwise

} TrieNode;

int main() {

 TrieNode* root = init();

 // Fill trie rooted at root here.

 // Set up code before recursive function call.

 char buffer[100];

 buffer[LENGTH+1] = '\0';

 printWordsLenN(root, 0, buffer, LENGTH);

 freeTree(root);

 return 0;

}

// Prints all words in the trie rooted at root of length n.

void printWordsLenN(TrieNode* root, int k, char* buffer, int n) {

 if (root == NULL) return;

 // Fill in code here.

 if (k == n) {

 if (root->isWord) // 1 pt

 printf("%s\n", buffer); // 1 pt

 return; // 1 pt

 }

 // And there is some code to write here as well.

 for (int i=0; i<26; i++) { // 1 pt

 buffer[k] = (char)('a'+i); // 3 pts

 printWordsLenN(root->children[i], k+1, buffer, n); // 3 pts

 }

}

Page 1 of 5

Computer Science Foundation Exam

 August 23, 2025

Section C

ALGORITHM ANALYSIS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 ANL

2 10 ANL

3 5 ANL

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2025 Section C: Algorithms Analysis

Page 2 of 5

1) (10 pts) ANL (Algorithm Analysis)

What is the Big-Oh run-time of the following function in terms of BOTH n and k? Carefully explain your

reasoning. You may assume that all integers stored in values are positive and that the sum of the values of the

form 2k/values[i] is greater target. Note: most of the credit will be due to the reasoning, guesses at the correct

answer without any justification will only receive 1 point.

int f(int* values, int n, int k, long long target) {

 int lo = 0;

 int hi = (1<<k);

 while (lo < hi) {

 int mid = (lo+hi)/2;

 long long tmp = 0;

 for (int i=0; i<n; i++)

 tmp += mid/values[i];

 if (tmp < target)

 lo = mid+1;

 else

 hi = mid;

 }

 return lo;

}

The outer loop is a binary search structure with initial values of lo and hi set to 0 and 2k, respectively. The number

of times this loop structure will run is lg (2k) since each loop iteration the difference between lo and hi gets

divided by 2. Since the log base is 2, lg (2k) = k.

Luckily, inside the main loop, the code takes the same amount of time to run each time and is dominated by the

for loop, which runs n times. There are a fixed number of statements outside of the for loop, so these take O(1)

time. Since we repeat this for loop k times, it follows that the run time of this function in terms of n and k is

O(nk).

Grading:

6 pts for recognizing that the outer loop runs k times. 2 pts for recognizing that the difference between lo

and hi initially is 2k, 2 pts for noticing the binary search type structure, 2 pts for applying the log rule to get

to the conclusion that this code runs k times.

2 pts for recognizing that inside the while loop, the set of statements takes O(n) time dominated by the for

loop.

1 pt for multiplying and 1 pt for the answer O(nk).

Fall 2025 Section C: Algorithms Analysis

Page 3 of 5

2) (10 pts) ANL (Algorithm Analysis)

An algorithm to process n entries of data runs in 𝑂(𝑛√𝑛
3

) time. For n = 403, the algorithm takes 2.5

milliseconds to run. How long will the algorithm take to run for an input size of n = 803, in

milliseconds?

Let 𝑇(𝑛) = 𝑐𝑛√𝑛
3

 be the amount of time the algorithm takes to process n entries of data. It follows that

𝑇(403) = 𝑐403√403
3

= 𝑐(403 × 40) = 2.5𝑚𝑠

𝑐 =
2.5𝑚𝑠

404

Now, we must determine 𝑇(803).

𝑇(803) = 𝑐803√803
3

=
2.5𝑚𝑠

404
(803 × 80) = (2.5𝑚𝑠) ×

804

404
= (2.5𝑚𝑠) × (

80

40
)
4

= 2.5(16)𝑚𝑠 = 𝟒𝟎𝒎𝒔

Note: Some students interpreted the question with the run time of as 𝑶(𝒏𝟑√𝒏). If it’s clear that this is

how they interpreted, here is the corresponding work (grading criteria is nearly identical):

𝑇(403) = 𝑐(403)3√403 = 𝑐(409 × 40√40) = 2.5𝑚𝑠

𝑐 =
2.5𝑚𝑠

4010.5

Now, we must determine 𝑇(803).

𝑇(803) = 𝑐(803)
3
√803 =

2.5𝑚𝑠

4010.5
(8010.5) = (2.5𝑚𝑠) ×

8010.5

4010.5
= (2.5𝑚𝑠) × (

80

40
)
10.5

= 2.5(210)(√2)𝑚𝑠

= 𝟐𝟓𝟔𝟎√𝟐𝒎𝒔

Grading: 1 pt set up equation for c

 3 pts get to RHS = 2.5/404 or 2/5/4010.5 or equivalent

 1 pt to get to c

 1 pt plug in 803

 4 pts to simplify to correct answer (give partial as needed)

Fall 2025 Section C: Algorithms Analysis

Page 5 of 5

3) (5 pts) ANL (Summations)

Determine the following summation in terms of n, in factorized form. (Do NOT multiply the answer out

into polynomial form. Note: Your answer should NOT have a fraction in it.)

∑𝑖3
2𝑛

𝑖=1

∑𝑖3
2𝑛

𝑖=1

=
(2𝑛)2(2𝑛 + 1)2

4
=
4𝑛2(2𝑛 + 1)2

4
= 𝒏𝟐(𝟐𝒏 + 𝟏)𝟐

Grading: 2 pts correctly plug into formula

 2 pts expand (2n)2

 1 pt cancel with 4 and write final answer

Page 1 of 4

Computer Science Foundation Exam

 August 23, 2025

Section D

ALGORITHMS

NO books, notes, or calculators may be used,

and you must work entirely on your own.

SOLUTION

Question # Max Pts Category Score

1 10 DSN

2 5 ALG

3 10 DSN

TOTAL 25 ----

You must do all 3 problems in this section of the exam.

Problems will be graded based on the completeness of the solution steps and not

graded based on the answer alone. Credit cannot be given unless all work is shown

and is readable. Be complete, yet concise, and above all be neat. For each coding

question, assume that all of the necessary includes (stdlib, stdio, math, string) for

that particular question have been made.

Fall 2025 Section D: Algorithms

Page 2 of 4

1(10 pts) DSN (Recursive Coding)

In a 2D video game, one can spray a mist from a cell from the top of the game board. The mist will

spread recursively to up to 3 cells below it: left, center and right, unless there is a mist blocker at that

cell. Here is a before and after picture of activating the mist from cell row 0 cell 3. The letter ‘M’ is used

for mist and ‘B’ for blocker:

 M M

 B B M M

 B B M B M B

 M M M M M

Complete the code below so that it recursively activates the mist from row r, column c. You may

assume the array grid has numR rows and numC columns. (Note: The diagram above has 4 rows and 7

columns.) To activate the mist, the recursive function places the character ‘M’ in the spot r, c (unless

there’s already a B there, in which nothing happens), and then recursively mists the three spots below it.

For convenience, both DR,CD arrays and an inbounds function have been provided.

#define NUMDIR 3

const int DR[3] = {1,1,1};

const int DC[3] = {-1,0,1};

void mistRec(char** grid, int r, int c, int numR, int numC) {

 // Don’t do anything if (r,c) is out of bounds or contains ‘B’

 if (!inbounds(r,c, numR, numC)) return; // 2 pts

 if (grid[r][c] == 'B') return; // 2 pts

 // Put the mist in location r, c

 grid[r][c] = 'M'; // 1 pt

 // Mist below.

 for (int i=0; i<3; i++) // 1 pt

 mistRec(grid, r+DR[i], c+ DC[i], numR, numC); // 4 pts

}

int inbounds(int myr, int myc, int numR, int numC) {

 return myr >= 0 && myr < numR && myc >= 0 && myc < numC;

}

Fall 2025 Section D: Algorithms

Page 3 of 4

2) (5 pts) ALG (Sorting)

Show the result after each iteration of performing Bubble Sort on the array shown below. Remember

that the largest value is guaranteed to be in the correct spot (last index) after the first iteration of the

algorithm.

Iteration Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6

0 10 22 16 30 13 17 8

1 10 16 22 13 17 8 30

2 10 16 13 17 8 22 30

3 10 13 16 8 17 22 30

4 10 13 8 16 17 22 30

5 10 8 13 16 17 22 30

6 8 10 13 16 17 22 30

Grading: 1 pt per line must get whole line correct to get the point.

Fall 2025 Section D: Algorithms

Page 4 of 4

3) (10 pts) DSN (Bitwise Operators)

Complete the function below, using the appropriate bitwise operators when necessary, so that it returns 1

if the array, numbers (first parameter to the function) contains a subset of values that adds up exactly

to target (third parameter to the function). Note that the second parameter, n, represents the length

of the array numbers. If no such subset exists, then the function should return 0.

int subsetSum(int* numbers, int n, int target) {

 for (int i=0; i<(1<<n); i++) {

 int sum = 0; // 1 pt

 for (int j=0; j<n; j++) // 2 pt

 if (i & (1<<j)) // 3 pts

 sum += numbers[j]; // 2 pts

 if (sum == target) return 1; // 2 pts (1 pt if, 1 pt ret)

 }

 return 0;

}

	SecA-Aug25-Sol.pdf
	SecB-Aug25-Sol.pdf
	SecC-Aug25-Sol.pdf
	SecD-Aug25-Sol.pdf

